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ABSTRACT Accurately predicting traffic risks at urban intersections is essential for improving road safety.
While traditional models use data sources like road traffic conditions, geometry, and signals, they often
miss the spatial interactions between road networks and buildings. This study introduces a multimodal deep
learning framework that integrates aerial imagery, building footprint data, and traffic flow information to
improve traffic risk prediction and better capture these complex relationships.
By leveraging datasets from OpenStreetMap, the UK Traffic Count, and high-resolution aerial imagery,
our approach creates a comprehensive representation of the urban environment, capturing intricate spatial
relationships between road networks, surrounding structures, and traffic conditions. Using DeepLabV3+ and
UNet++ as baseline models, we demonstrate that combining building and traffic data enhances prediction
accuracy compared to models relying solely on visual data.
Our results show that the DeepLabV3+ model, when incorporating both building and traffic data,
achieves the highest Intersection over Union (IoU) score of 0.4052 and the lowest Root Mean
Square Error (RMSE) of 0.0907. These findings underscore the effectiveness of a multimodal ap-
proach in traffic risk assessment, offering a more precise tool for urban planning and traffic manage-
ment interventions. The code and data used in this study are available at https://github.com/zachtian/
Multimodal-Learning-for-Traffic-Risk-Prediction.

INDEX TERMS Geographic information systems, Traffic crash prediction, Computer Vision

I. INTRODUCTION

ROAD traffic accidents continue to pose a significant
global public health challenge, resulting in approxi-

mately 1.19 million fatalities and 20 to 50 million non-fatal
injuries annually, along with substantial economic costs [1].
According to the World Health Organization (WHO), these
accidents account for nearly 3% of the Gross Domestic
Product (GDP) for most countries [1]. The causes of traffic
accidents are complex and multifaceted, encompassing fac-
tors such as road conditions, traffic volume, weather, driver
behaviour, and vehicle characteristics [2]–[6]. Predicting
accident-prone areas is particularly challenging due to the
dynamic interplay of these variables. Intersections, where
vehicles, pedestrians, and cyclists frequently interact, are
especially prone to collisions [7].

Traditional methods for traffic accident prediction often
integrate data from multiple sources, including historical
accident records, traffic volume, weather conditions, and

road infrastructure information [8], [9]. While these methods
provide valuable insights, they often rely on static analyses
that may not fully capture the complex dynamics of urban
environments. Additionally, many existing models do not
consider the micro-level impacts of built environment fea-
tures, such as building footprints, which can significantly
influence accident risk by affecting visibility, traffic flow,
and driver behaviour. Recent advancements, such as the
work by He et al. [10], have leveraged satellite imagery and
GPS trajectories to create high-resolution traffic accident risk
maps. However, models that effectively integrate detailed
spatial data, such as the layout and density of surrounding
structures, remain underexplored. This study addresses these
gaps by introducing a multimodal deep-learning framework
that enhances traffic risk prediction by integrating aerial
imagery, building footprint data, and traffic flow informa-
tion. Additionally, this model offers a valuable solution for
developing countries where historical accident data may be
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limited or incomplete. By relying on more accessible data
sources, such as satellite imagery and traffic flow data, our
framework enables accurate accident risk prediction even in
areas with sparse or unavailable accident records.

To address these gaps, we propose a novel multimodal
learning framework that utilizes advanced models such as
DeepLabV3+ and UNet++ while incorporating additional
data layers, including satellite images, building information,
and traffic flow data, to improve traffic risk prediction
accuracy. Unlike the baseline versions of these models,
which rely solely on aerial imagery, our approach integrates
supplementary information on building structures and traffic
flow. This fusion of multiple data types enables a more
comprehensive analysis of traffic risk factors, potentially
revealing patterns that remain hidden when using single-
modality data. Figure 1 illustrates the task, where satellite
images (left) are used with other data, such as building
footprint and traffic flow, to predict traffic risk (right). The
heatmaps show risk intensity, with brighter areas indicating
higher risk.

FIGURE 1. Comparison of satellite images, ground truth, and predicted
traffic risk heatmaps.

Our approach aims to overcome the limitations of tra-
ditional models by dynamically incorporating diverse data
sources, providing a more adaptive and precise method for
traffic risk prediction.

The main contributions of our work are as follows:

• We propose a novel multimodal learning framework for
traffic accident risk prediction that integrates diverse
data sources, including aerial imagery, building foot-
prints, and traffic flow data. This approach provides a
comprehensive and context-aware understanding of the
factors influencing traffic risk at intersections.

• We investigate how junction visibility, influenced by
surrounding buildings and structures, affects accident
risk, showing its potential for real-world applications
in traffic management and urban planning by providing
actionable insights for targeted safety interventions.

• Our approach achieves notable performance improve-
ments over baseline models such as DeepLabV3+ and
U-Net++ by incorporating these diverse data inputs, re-
sulting in enhanced predictive accuracy for identifying
high-risk zones at intersections.

Our paper is structured as follows:
In Section II, a review of studies on intersection-related

accidents, contributing factors, the use of Geographic In-
formation Systems (GIS) in accident analysis, and deep
learning approaches for risk prediction is provided. Sec-
tion III describes the data sources, collection methods, and
preprocessing techniques for model training and evalua-
tion. Section IV explains the methodologies, including the
baseline models (DeepLabV3+ and UNet++), data fusion
strategies, and evaluation metrics. Section V presents the
experimental results, and model performance, and discusses
the influence of different factors on accident risk. Section
VI summarises the key findings, implications, and potential
directions for future research.

II. RELATED WORK
Research on traffic accident risks has extensively explored
factors contributing to intersection-related accidents, the use
of GIS for spatial analysis, and the application of deep learn-
ing techniques. This section reviews the key developments
in these areas, highlighting the gaps our work addresses.

A. Intersection-Related Accidents and Contributing
Factors
Intersections merit spacial attention within the context of
road safety analysis due to the high frequency of conflicts
between road users, making them hotspots for accidents
[11]. The complexity of interactions at these junctions, often
exacerbated by obstructed sightlines, increases the likelihood
of collisions [12]. Notably, intersections account for a sub-
stantial portion of pedestrian accidents, as highlighted by the
National Highway Traffic Safety Administration [13].

Previous studies have investigated the factors contributing
to intersection-related accidents, focusing on both human
and environmental aspects. Human factors, such as driver
behaviour and pedestrian activity, have been examined in
relation to accident rates [2], [3]. However, these studies
often rely on self-reported data, which can introduce biases.

Environmental factors, including road type, traffic volume,
and intersection design, have been analysed using various
quantitative methods [4], [14], [15]. While these studies
provide valuable insights, they often overlook the impact
of geographical and contextual factors that are less tangible
but equally important in understanding accident risks at
intersections.

B. Utilising Geographic Information Systems (GIS) in
Accident Analysis
Traditional accident studies often rely on macro-level
datasets that cover extensive geographical areas, focusing on
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accident frequency and severity over time. While many stud-
ies concentrate on specific regions, fewer have approached
accident data analysis on a broader, macro-scale [16]–[20].
However, such analyses may encounter issues related to
spatial autocorrelation, which challenges the assumption of
independent observations across regions [21]. Therefore,
incorporating spatial considerations is crucial in these in-
vestigations.

Geographic Information Systems (GIS) tools are increas-
ingly utilised in road safety research for their ability to
handle and analyse geospatial data effectively. Two primary
applications of GIS in this field include the identification
of accident hotspots and the geocoding of accidents for
spatial analysis. Hotspot identification methods commonly
used include kernel density estimation, nearest neighbour
distances, and spatial indices like Moran’s I. For instance,
[22] employed the SANET toolkit to identify hotspot loca-
tions, while [23] used the Getis-Ord Gi* statistic to examine
spatial autocorrelation in accident data.

The second key application of GIS, geocoding, involves
the precise positioning of accident data for statistical anal-
ysis. Studies such as [17] have visualised geocoded road
and accident datasets to link accidents with specific road
segments. Similarly, [24] integrated traffic accident data
with road network information to accurately locate accident
occurrences. [25] organised road casualty data spatially in
England, associating it with various land-use types within
electoral districts.

C. Deep Learning Approaches for Accident Risk
Prediction
In recent years, deep learning has emerged as a powerful tool
for predicting traffic accident risks. One of the most used
deep learning architectures employed in this domain is the
Convolutional Neural Network (CNN). CNNs are adept at
processing grid-like data structures, such as images or spatial
data, making them ideal for analyzing traffic data embedded
within geographic contexts. For instance, CNNs have been
used to analyse satellite imagery, road network layouts, and
traffic volume maps to predict accident hotspots with high
accuracy [10].

Recurrent Neural Networks (RNNs), particularly Long
Short-Term Memory (LSTM) networks, have also been
utilised to capture temporal dependencies in traffic data [26].
Another advanced technique is the use of Graph Neural
Networks (GNNs), which are designed to handle data rep-
resented as graphs, such as road networks [8], [27].

Deep learning models for traffic accident risk prediction
have the potential to integrate multiple data sources, in-
cluding historical accident records, traffic volume, weather
conditions, and road infrastructure information [28]. Lin et
al. [8] proposed a novel variable selection method based on a
frequent pattern tree to enhance real-time traffic accident risk
prediction, while Ren et al. [9] introduced a deep learning

framework that integrates heterogeneous data for citywide
accident risk prediction.

In summary, while previous studies have contributed to
our understanding of traffic accident risks at intersections,
there has been limited exploration of integrating detailed
spatial and dynamic traffic data at a micro-level. Our research
addresses this gap by developing a deep learning framework
that incorporates multiple data modalities, including building
footprints, traffic volume, and road network data, to predict
accident risks with higher accuracy and detail.

III. DATA COLLECTION AND PREPARATION
This section outlines the data sources, extraction methods,
and preprocessing techniques used to prepare these datasets
for effective modelling and analysis.

A. Data Sources
In this study, five primary datasets are used to analyse factors
influencing road accidents at intersections: OpenStreetMap
[29] for detailed road network and intersection information,
Mapbox Satellite [30] for high-resolution aerial images, the
Road Safety Data [31] for comprehensive historical accident
records, the UK Traffic Count dataset [32] for traffic volume
statistics, and the Building Geographic Dataset from Open-
StreetMap, which provides architectural data for building
dimensions surrounding road networks. Table 1 summarises
the key elements extracted from each dataset.

1) OpenStreetMap Data, Building Geographic Dataset, and
Mapbox Satellite Imagery
OpenStreetMap (OSM) [29] serves as an extensive, collab-
oratively maintained mapping resource that provides free
access to detailed geographic information worldwide. For
our research, OSM offered data on the structural layout of
road networks, including the precise geolocations of roads,
classifications of road types, and intersection configurations.
The Building Geographic Dataset, also derived from OSM,
provided detailed spatial data on the built environment
surrounding road intersections, including the coordinates,
footprint areas, and heights of buildings [33]. Understand-
ing the spatial distribution and dimensions of buildings is
essential, as these structures can influence driver visibility
and manoeuvrability at intersections, thus impacting acci-
dent likelihood and severity. An illustration of the Building
Geographic Data is shown in Fig. 2.

To complement OSM data, we utilised Mapbox Satellite
imagery [30] to obtain high-resolution aerial views of the
study area. These satellite images provided essential visual
context that enhanced our understanding of the surrounding
environment’s influence on traffic patterns and accident
occurrences. Satellite imagery carries additional layers of
information about road conditions, such as the number of
lanes, the presence of road shoulders, pavement quality, and
pedestrian crossings, which are not always available in vector
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FIGURE 2. Visual representation of the Building Geographic Data (red).

data [10]. This contextual information enriched our analysis,
helping us capture crucial details like lane markings, traffic
density, and pedestrian movement. We used Folium [34], a
Python library, to integrate and visualise the OSM data and
Mapbox Satellite imagery.

2) UK Traffic Count: Annual Average Daily Flow (AADF)
The UK Traffic Count dataset [32] offers Annual Average
Daily Flow (AADF) statistics, which represent the estimated
average number of vehicles traversing specific road segments
each day. This dataset is important for understanding traffic
volume and flow patterns, fundamental factors influencing
the probability and frequency of accidents at intersections
[35].

3) Road Safety Data
We utilised the Department for Transport’s Road Safety
Data [31], covering the period from 1979 to mid-2023. This
dataset includes comprehensive details such as the location
(latitude/longitude), date, time, severity, vehicle types, and
road conditions of accidents in the UK. For the purpose
of this study, we exclusively used the geographic location
(latitude and longitude) of each accident to focus on spatial
risk patterns, particularly at intersections.

TABLE 1. Summary of Datasets Used in the Study

Dataset Key Elements
OpenStreetMap Road networks, intersection details
Mapbox Satellite High-resolution aerial images
Building Geographic Dataset Building footprints
UK Road Accident Dataset Accident locations, severity
UK Traffic Count Annual Average Daily Flow statistics

B. Data Processing
We employed a multi-step data processing approach to ex-
tract meaningful features from the raw datasets. We focused
on preparing the data for neural network training and gener-
ating detailed risk maps for traffic accident prediction. The

process involved creating spatial representations of accident
risk and traffic volume.

The first step in our analysis involved the extraction of all
intersection points from the OpenStreetMap database, with
the aim of identifying key areas of interest within the road
network. For each intersection, a square bounding box was
defined and centred. This bounding box had a fixed size
of 0.002 degrees in both latitude and longitude, roughly
equivalent to 222 meters in London. This specific size was
selected to ensure that most accidents were captured without
overlapping with nearby intersections, while still leaving
sufficient space for data augmentation and image cropping
during model training.

Due to differences in scale between x (longitude) and y
(latitude) coordinates, we applied a correction factor to the
y-coordinates to account for the Earth’s curvature and pro-
jection distortions. This adjustment ensures that the bound-
ing box maintains the correct proportions across different
latitudes, compensating for the fact that distances between
points of longitude decrease as you move away from the
equator. The adjusted y-coordinates were scaled using the
following equation:

yscaled =

(
y −min(y)

max(y)−min(y)

)
×
(
max(x)−min(x)

cos(latitude)

)
,

(1)
where yscaled is the adjusted y-coordinate, and latitude

represents the center latitude of the bounding box.

1) Accident Heatmap Creation
To represent accident risk, we created heatmaps by rasteriz-
ing accident points within a fixed bounding box around each
intersection. Accident counts were mapped onto a uniform
grid, and a log transformation was applied to manage the
Poisson-like distribution of the accident data:

Heatmaplog(x, y) = log(1 + Heatmap(x, y)), (2)

where Heatmap(x, y) represents the raw accident count
at each grid position (x, y). The log transformation miti-
gates variance and normalizes the distribution, ensuring a
more balanced representation of accident density. Gaussian
smoothing with a parameter of σ = 15 was applied to
produce a realistic spatial visualization of accident risk.
Through empirical testing, we found that σ = 15 offers
an optimal balance between visual clarity and smoothness,
highlighting high-risk areas without excessive blurring of
localized details (Fig. 3).

2) Traffic Volume Rasterization
We calculated traffic volume as a key feature to evaluate
the influence on accident risk. Traffic counts from the UK
Traffic Count dataset were assigned to each road segment
by finding the nearest traffic count point. These counts
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FIGURE 3. Visual representation of ground truth accident density using
heatmaps, highlighting high-risk areas at urban intersections.

were normalised to create a traffic volume raster for each
intersection, representing the intensity of traffic flow in the
area, as depicted in Fig. 4.

FIGURE 4. Comparison of GIS data (left) with corresponding traffic
volume data (right), illustrating traffic flow on road segments.

C. Experiment Setup
The experiment was conducted using data from London,
UK, focusing on an area centred near Imperial College
London at the coordinates (51.50212, -0.19123). This urban
environment was chosen due to its high traffic volume,
diverse intersection layouts, and varying road types, making
it suitable for a comprehensive analysis of traffic risks.
We collected geographical data within a 3000-meter radius
around this central point for the training dataset. To ensure
that the model generalizes well to new urban environments
and does not overfit to a specific region, we partitioned
the data into distinct training and testing sets, based on
geographic separation.

The test set was defined by shifting the sampling area
4000 meters to the east of the initial radius, thus eliminating
any overlap with the training data. This geographical split
ensures a robust evaluation of the model’s ability to perform
in unseen urban contexts. This sampling method resulted
in 5096 samples for training and 600 samples for testing,
providing a broad dataset for evaluating model performance
across different traffic scenarios and intersection types.

IV. METHODOLOGY
In this section, we describe the methodologies used to
develop and evaluate our proposed multimodal traffic risk
prediction model. This includes the baseline models, data
fusion strategies, and evaluation metrics.

A. Baseline Models: DeepLabV3+ and UNet++
To establish a benchmark for our multimodal traffic risk
prediction model, we employ two well-known segmentation
models: DeepLabV3+ [36] and UNet++ [37].

1) DeepLabV3+
DeepLabV3+ is a state-of-the-art semantic segmentation
model that extends the DeepLabV3 architecture by inte-
grating an encoder-decoder structure. The encoder employs
dilated convolutions, which are effective in capturing con-
textual information at various scales without compromising
spatial resolution, making it suitable for dense prediction
tasks. The decoder module further enhances segmentation
results by recovering spatial details lost during the encoding
phase. This design allows DeepLabV3+ to extract mean-
ingful features from high-resolution aerial imagery, which
is crucial for applications such as road extraction and land
cover mapping [36].

2) UNet++
UNet++ is an advanced variant of the U-Net architecture,
designed to improve segmentation accuracy by reducing the
semantic gap between encoder and decoder feature maps. It
introduces dense skip connections and nested convolutional
blocks, which enhance gradient flow and enable the model to
learn finer spatial details. This architecture is adept at captur-
ing multi-scale contextual information, making it particularly
effective for segmenting complex urban environments from
aerial images [37].

Both DeepLabV3+ and UNet++ serve as baseline models
that use aerial images as input to predict traffic risk. These
models provide a reference point for evaluating the perfor-
mance improvements achieved by our proposed multimodal
approach.

B. Multimodal Data Integration
The extracted building and traffic data are combined with
aerial images by stacking them into multi-channel inputs.
Specifically, the building data is represented as a 2D grid
that aligns with the aerial imagery, where each tile contains
the total floor area for the corresponding location. Similarly,
traffic data is transformed into a grid format, where each
tile represents the traffic volume for a particular area. These
data layers are concatenated with the aerial image channels,
resulting in a unified input consisting of the original 3-
channel aerial imagery plus additional channels for building
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FIGURE 5. Overview of the proposed framework for traffic risk prediction. The framework integrates multiple data sources, including OpenStreetMap
(OSM) data, UK Traffic Count data, and UK Road Accident data, to create a comprehensive representation of the urban environment. Aerial imagery and
building footprint data from OSM are combined with traffic flow information to form the input for the deep learning model.

and traffic information. The general framework design is
shown in Fig. 5.

Modifications were made to the input layer of both the
DeepLabV3+ and UNet++ models to accommodate the
multimodal input data. Traditionally, these models use a 3-
channel input corresponding to the RGB channels of aerial
images. However, in our proposed multimodal framework,
we extended the input layer to accept 5 channels.

C. Evaluation Metrics
To ensure a comprehensive evaluation of the model’s effec-
tiveness in both identifying high-risk areas and accurately
predicting accident risk, we follow the approach of He et
al. [10] by dividing the evaluation into two distinct tasks:
classification and regression.

For the classification task, our objective is to accurately
identify high-risk zones within the predicted heatmaps. To
achieve this, we utilise the Intersection over Union (IoU)
metric, a standard measure of overlap between the predicted
high-risk regions and the actual high-risk regions. We define
a high-risk zone as any area where the predicted or actual
risk score exceeds the 90th percentile. Both the predicted
and ground truth heatmaps are thresholded at this 90% level
to classify zones as high risk.

The IoU is computed as:

IoU =
|Phr ∩Ghr|
|Phr ∪Ghr|

(3)

where:

• Phr denotes the set of predicted high-risk zones.
• Ghr denotes the set of ground truth high-risk zones.
• |Phr ∩ Ghr| represents the cardinality of the intersec-

tion of these sets (i.e., the number of pixels correctly
identified as high risk).

• |Phr ∪ Ghr| represents the cardinality of the union of
these sets (i.e., the total number of pixels classified as
high risk in either set).

This metric provides a robust measure of the model’s
accuracy in identifying high-risk zones, as it penalises both
false positives (incorrectly identified high-risk areas) and
false negatives (missed high-risk areas).

For the regression task, where the objective is to predict
the risk value in each tile and time window, we use the Mean
Square Error (MSE) to assess the model’s accuracy. The
MSE captures the discrepancy between the predicted and
actual risk values (normalized between 0 and 1). The MSE
is defined as:

MSE =
1

n

n∑
i=1

(ri − r̂i)
2 (4)

where:

• n is the total number of tiles.
• ri is the actual normalised risk value (between 0 and

1) in tile i.
• r̂i is the predicted normalised risk value (between 0 and

1) in tile i.

The Root Mean Square Error (RMSE), derived from
MSE, provides a measure of the model’s overall predictive
performance across all tiles. RMSE is calculated as:

RMSE =
√

MSE =

√√√√ 1

n

n∑
i=1

(ri − r̂i)2 (5)

V. RESULTS AND DISCUSSION
In this section, we present the results of our experiments,
comparing the performance of the proposed multimodal
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approach with baseline models. We analyse the impact of
integrating different data modalities on the model’s ability
to predict traffic risk accurately and discuss the implications
of these findings for urban traffic management.

A. Training Details
The model was trained to minimize the Mean Squared Error
(MSE) loss, effectively capturing the discrepancy between
the predicted and actual accident heatmaps. We used the
Adam optimizer [38] with an initial learning rate of 1×10−4,
leveraging its adaptive learning rate capabilities for improved
convergence. To enhance the model’s robustness, data aug-
mentation techniques, such as random rotation, flipping, and
cropping, were applied during training to diversify the input
data.

Each model was trained for 300 epochs, and the best-
performing model in terms of RMSE was selected for
comparison. The experiments were conducted on a system
equipped with an Intel(R) Xeon(R) w5-2455X processor, an
NVIDIA A6000 graphics card, and 256GB of RAM.

B. Baseline Comparison
We compare our proposed multimodal approach to two
widely recognised baseline models: DeepLabV3Plus [36]
and UNetPlusPlus [37]. For this study, the baselines were
tested with three different input configurations:

• Aerial Images Only: Using just the aerial images to
predict traffic risk.

• Aerial Images with Building Data: Combining aerial
images with building footprint data to analyse the
influence of surrounding structures on accident risks.

• Aerial Images with Building and Traffic Data: Inte-
grating aerial images with both building footprint and
traffic flow data.

The performance of each model configuration is evaluated
using two key metrics: Root Mean Square Error (RMSE) and
Intersection over Union (IOU).

TABLE 2. Performance comparison of different models for traffic risk

prediction. RMSE (↓) indicates the Root Mean Square Error, where lower

values are better, and IOU (↑) represents the Intersection over Union, where

higher values are preferred.

Model Name RMSE (↓) IOU (↑)

Unet++ .1018 .3281

Unet++ w/ building .0944 .3717

Unet++ w/ building and traffic .0900 .4035

DeepLabV3+ .0999 .3406

DeepLabV3+ w/ building .0939 .3767

DeepLabV3+ w/ building and traffic .0907 .4052

C. Results Analysis
The results, presented in Table 2, highlight the impact of
incorporating additional data modalities on the performance
of both baseline models.

Both the UNet++ and DeepLabV3+ models exhibit a
consistent trend where incorporating additional data modal-
ities leads to lower RMSE values and higher IOU scores.
This trend confirms that the integration of diverse data types
improves the model’s ability to predict traffic risks accurately
and localise high-risk zones.

For the UNet++ model, the RMSE decreases from 0.1018
to 0.0900 when both building and traffic data are integrated,
indicating greater accuracy in predicting the number of
accidents. Similarly, the IOU metric increases from 0.3281
to 0.4035, demonstrating enhanced capability in accurately
identifying high-risk zones.

The DeepLabV3+ model also shows improved perfor-
mance with the inclusion of building and traffic data. The
RMSE reduces from 0.0999 to 0.0907, and the IOU increases
from 0.3406 to 0.4052, further validating the effectiveness
of using multimodal data. Notably, the DeepLabV3+ model
with both building and traffic data achieves the highest
IOU of 0.4052, outperforming all other configurations in
identifying high-risk areas.

As shown in Fig. 6, both models exhibit clear improve-
ments in RMSE and IOU metrics as additional data modali-
ties are incorporated. The bar and line plots provide a visual
representation of these performance gains.

FIGURE 6. Performance comparison of UNet++ and DeepLabV3+ models
with different input configurations. The plot shows RMSE (bar plot) and
IoU (line plot) metrics for each model configuration: baseline (aerial
images only), with building data, and with both building and traffic data.

D. Heatmap Outputs Analysis
The heatmap outputs in Fig. 7 illustrate the predicted traf-
fic risk for several urban intersections, with each column
representing a different model configuration. The baseline
DeepLabV3+ model, shown in the forth column, captures
some high-risk zones but with considerable dispersion and
false positives due to its reliance on aerial imagery alone.
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FIGURE 7. Heatmap outputs of the predicted traffic risk for various urban intersections, with the leftmost column showing the original aerial images
and subsequent columns representing different model configurations.

In contrast, the DeepLabV3+ model with multimodal data
exhibits notably improved performance by identifying more
concentrated and accurate high-risk zones. It better reflects
the real-world complexity of traffic risk factors.

Similarly, the UNet++ baseline model, shown in the
third column, demonstrates the ability to detect accident
hotspots, but its predictions are less specific and contain
several inaccuracies. When enhanced with multimodal data,
it also shows improved performance, with more distinct
and well-defined high-risk areas. However, the multimodal
DeepLabV3+ model outperforms the multimodal UNet++
model, providing sharper and more focused risk predictions.

These findings suggest that integrating diverse data
sources like building footprints and traffic flow boosts the
predictive power of both models and enables more accu-
rate identification of high-risk zones, offering insights for
targeted urban traffic management interventions.

VI. CONCLUSIONS AND FUTURE WORK
This study demonstrates the effectiveness of a multimodal
approach for predicting traffic accident risks at urban in-
tersections by integrating aerial imagery, building footprints,
and traffic flow data. Our experiments with the DeepLabV3+

and UNet++ models show that this combination of diverse
data sources leads to notable improvements in model perfor-
mance. The inclusion of building and traffic data alongside
aerial images results in lower Root Mean Square Error
(RMSE) and higher Intersection over Union (IOU) scores,
indicating more accurate predictions and better identification
of high-risk areas. These results underscore the value of a
multimodal data fusion strategy in enhancing urban traffic
safety assessments.

Future work could focus on developing specialized mod-
ules to independently process each data modality—such as
aerial images, building data, and traffic flow—enabling the
model to extract unique features from each source more
effectively. Incorporating advanced techniques like cross-
attention mechanisms could further enhance the model’s
ability to learn complex relationships between different data
types, providing a deeper understanding of spatial and con-
textual factors contributing to traffic risks. Moreover, future
research could explore the integration of additional data
sources that influence accident risks, such as junction ge-
ometry, traffic signal timings, and right-turn traffic volumes.

Additionally, extending the model’s application to vari-
ous urban environments could help test its robustness and
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adaptability across cities with different traffic conditions,
road networks, and socio-economic contexts. This approach
could also be highly beneficial for developing countries
where historical accident data may be limited or unavailable.
The multimodal framework provides a data-driven alternative
for predicting accident risks using readily available satellite
imagery, road infrastructure, and traffic data, making it a
valuable tool for traffic safety improvements in regions with
constrained resources.
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estimation for general traffic situations, and application to intersection
safety,” Ph.D. dissertation, INRIA, 2013.

[12] S. S. C. Congress, A. J. Puppala, A. Banerjee, and U. D. Patil, “Iden-
tifying hazardous obstructions within an intersection using unmanned
aerial data analysis,” International journal of transportation science
and technology, vol. 10, no. 1, pp. 34–48, 2021.

[13] National Highway Traffic Safety Administration, “Traffic safety
facts,” 2021. [Online]. Available: https://www.nhtsa.gov/

[14] K. Dixon, C. Monsere, R. Avelar, J. S. Barnett, P. Escobar, and
S. M. Kothuri, “Improved safety performance functions for signalized
intersections,” 2015.

[15] L. Eboli, C. Forciniti, and G. Mazzulla, “Factors influencing accident
severity: an analysis by road accident type,” Transportation research
procedia, vol. 47, pp. 449–456, 2020.

[16] S. V. Gomes, “The influence of the infrastructure characteristics in
urban road accidents occurrence,” Accident Analysis & Prevention,
vol. 60, pp. 289–297, 2013.

[17] L. Ma, X. Yan, W. Qiao et al., “A quasi-poisson approach on modeling
accident hazard index for urban road segments,” Discrete dynamics in
nature and society, vol. 2014, 2014.

[18] L. Hu, X. Wu, J. Huang, Y. Peng, and W. Liu, “Investigation of clusters
and injuries in pedestrian crashes using gis in changsha, china,” Safety
science, vol. 127, p. 104710, 2020.

[19] Z. Chen and W. D. Fan, “A multinomial logit model of pedestrian-
vehicle crash severity in north carolina,” International journal of
transportation science and technology, vol. 8, no. 1, pp. 43–52, 2019.

[20] H. Blayney, H. Tian, H. Scott, N. Goldbeck, C. Stetson, and P. An-
geloudis, “Bezier everywhere all at once: Learning drivable lanes
as bezier graphs,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2024, pp. 15 365–15 374.

[21] M. R. Dale and M.-J. Fortin, “Spatial autocorrelation and statistical
tests in ecology,” Ecoscience, vol. 9, no. 2, pp. 162–167, 2002.

[22] A. K. Al-Aamri, G. Hornby, L.-C. Zhang, A. A. Al-Maniri, and
S. S. Padmadas, “Mapping road traffic crash hotspots using gis-based
methods: A case study of muscat governorate in the sultanate of oman,”
Spatial Statistics, vol. 42, p. 100458, 2021.

[23] Z. Cheng, Z. Zu, and J. Lu, “Traffic crash evolution characteristic
analysis and spatiotemporal hotspot identification of urban road inter-
sections,” Sustainability, vol. 11, no. 1, p. 160, 2018.

[24] B. P. Loo, “Validating crash locations for quantitative spatial analysis:
a gis-based approach,” Accident Analysis & Prevention, vol. 38, no. 5,
pp. 879–886, 2006.

[25] R. B. Noland and M. A. Quddus, “A spatially disaggregate analysis of
road casualties in england,” Accident Analysis & Prevention, vol. 36,
no. 6, pp. 973–984, 2004.

[26] P. Li, M. Abdel-Aty, and J. Yuan, “Real-time crash risk prediction
on arterials based on lstm-cnn,” Accident Analysis & Prevention, vol.
135, p. 105371, 2020.

[27] B. Huang and B. Hooi, “Traffic accident prediction using graph neural
networks: New datasets and the travel model,” Traffic, vol. 27, no. 29,
p. 31, 2022.

[28] Y. Zhang, X. Dong, L. Shang, D. Zhang, and D. Wang, “A multi-modal
graph neural network approach to traffic risk forecasting in smart
urban sensing,” in 2020 17th Annual IEEE international conference
on sensing, communication, and networking (SECON). IEEE, 2020,
pp. 1–9.

[29] M. Haklay and P. Weber, “Openstreetmap: User-generated street
maps,” IEEE Pervasive computing, vol. 7, no. 4, pp. 12–18, 2008.

[30] Mapbox, “Mapbox satellite imagery,” https://www.mapbox.com/
imagery.

[31] Department for Transport. (2022) Reported road casualties
in great britain. [Online]. Available: https://data.gov.uk/dataset/
cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-safety-data

[32] ——. (2022) Road traffic statistics. [Online]. Available: https:
//roadtraffic.dft.gov.uk/downloads

[33] F. Biljecki, Y. S. Chow, and K. Lee, “Quality of crowdsourced
geospatial building information: A global assessment of openstreetmap
attributes,” Building and Environment, vol. 237, p. 110295, 2023.

[34] Filipe, “python-visualization/folium: v0.17.0,” Jun 2024. [Online].
Available: https://zenodo.org/record/11840616

[35] A. Glushkov, V. Shepelev, A. Vorobyev, V. Mavrin, A. Marusin, and
S. Evtykov, “Analysis of the intersection throughput at changes in the
traffic flow structure,” Transportation Research Procedia, vol. 57, pp.
192–199, 2021.

[36] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
“Encoder-decoder with atrous separable convolution for semantic
image segmentation,” in Proceedings of the European conference on
computer vision (ECCV), 2018, pp. 801–818.

[37] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “Unet++:
Redesigning skip connections to exploit multiscale features in image
segmentation,” IEEE transactions on medical imaging, vol. 39, no. 6,
pp. 1856–1867, 2019.

[38] D. P. Kingma, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

VOLUME , 9

https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.nhtsa.gov/
https://www.mapbox.com/imagery
https://www.mapbox.com/imagery
https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-safety-data
https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-safety-data
https://roadtraffic.dft.gov.uk/downloads
https://roadtraffic.dft.gov.uk/downloads
https://zenodo.org/record/11840616


Tian et al.: Preparation of Papers for IEEE OPEN JOURNALS

BIOGRAPHIES

Hanlin Tianis a postgraduate researcher at the
Centre for Transport Engineering and Modelling,
Imperial College London. He received a BEng in
Computer Science from Shandong University and
an MSc in Computer Engineering from New York
University. His main research interests include
computer vision and autonomous vehicles.

Yuxiang Fengis a Research Associate and Lab
Manager at the Centre for Transport Engineering
and Modelling, Imperial College London. He re-
ceived a BEng in Mechanical Engineering from
Tongji University and an MSc in Mechatronics
and PhD in Automotive Engineering from the
University of Bath. His main research interests
include environment perception, sensor fusion and
artificial intelligence for robotics and autonomous
vehicles.

Mohammed Quddusreceived the B.Sc. degree
in civil engineering from Bangladesh University
of Engineering and Technology in 1998, the mas-
ter’s degree in transportation engineering from the
National University of Singapore in 2001, and
the Ph.D. degree from Imperial College London
in 2006. He joined the School of Architecture,
Building and Civil Engineering, Loughborough
University, U.K., in 2006, as a Lecturer, where
he was a Professor of intelligent transport systems
(ITS) in 2013. In 2021, he moved to Imperial

College London as the Chair Professor of ITS. He has authored over 200
technical papers in international refereed journals and conference proceed-
ings. His research interests include connected and autonomous vehicles,
AI, and statistical modeling. He is an Associate Editor of Transportation
Research—C: Emerging Technologies.

Yiannis Demiris (SM’03)received the B.Sc.
(Hons.) degree in artificial intelligence and com-
puter science and the Ph.D. degree in intelligent
robotics from the Department of Artificial Intelli-
gence, University of Edinburgh, Edinburgh, U.K.,
in 1994 and 1999, respectively. He is a Professor
with the Department of Electrical and Electronic
Engineering, Imperial College London, London,
U.K., where he is the Royal Academy of Engineer-
ing Chair in Emerging Technologies, and the Head
of the Personal Robotics Laboratory. His current

research interests include human-robot interaction, machine learning, user
modeling, and assistive robotics. Prof. Demiris is a Fellow of the Institution
of Engineering and Technology (IET), and the British Computer Society
(BCS).

Panagiotis Angeloudisis Reader and Head of
the Transport Systems and Logistics Laboratory
(TSL), based in the Centre for Transport Studies
(CTS) at Imperial College London. Before es-
tablishing TSL, Panagiotis held a JSPS Research
Fellowship at Kyoto University. He previously ob-
tained a PhD in Transportation at Imperial College
London and spent periods as a research analyst at
DP World and the United Nations in Geneva. His
research focuses on the study of networks, optimi-
sation methods and multi-agent systems, as well

as their applications in autonomous transport systems, urban infrastructure
and logistics.

10 VOLUME ,


	INTRODUCTION
	RELATED WORK
	Intersection-Related Accidents and Contributing Factors
	Utilising Geographic Information Systems (GIS) in Accident Analysis
	Deep Learning Approaches for Accident Risk Prediction

	DATA COLLECTION AND PREPARATION
	Data Sources
	OpenStreetMap Data, Building Geographic Dataset, and Mapbox Satellite Imagery
	UK Traffic Count: Annual Average Daily Flow (AADF)
	Road Safety Data

	Data Processing
	Accident Heatmap Creation
	Traffic Volume Rasterization

	Experiment Setup

	METHODOLOGY
	Baseline Models: DeepLabV3+ and UNet++
	DeepLabV3+
	UNet++

	Multimodal Data Integration
	Evaluation Metrics

	RESULTS AND DISCUSSION
	Training Details
	Baseline Comparison
	Results Analysis
	Heatmap Outputs Analysis

	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	Biographies
	Hanlin Tian
	Yuxiang Feng
	Mohammed Quddus
	Yiannis Demiris (SM'03)
	Panagiotis Angeloudis


