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Abstract—As autonomous vehicles (AVs) continue to advance,
the integration of Large (Vision) Language Models (L(V)LMs)
into AV systems has become increasingly significant. These
models excel in natural language processing and visual rea-
soning, making them invaluable for enhancing the capabilities
of AV systems across various domains. This survey provides
a comprehensive and up-to-date overview of current research
and developments in the application of L(V)LMs in autonomous
driving, focusing on four key areas: modular integration, end-
to-end integration, data generation, and platforms and datasets.
We critically assess various methodologies, outcomes, and the
strengths and limitations of these approaches, highlighting the
gaps in existing surveys and how our work addresses them
by providing detailed analyses of practical integration strate-
gies and real-world implementations. Additionally, we explore
future research directions, including the practical integration of
L(V)LMs with existing AV systems, addressing regulatory and
ethical challenges, and enhancing Vehicle-to-Everything (V2X)
communication. This survey aims to inform and guide future
innovations in the field by offering detailed insights into L(V)LM
model choices, computational trade-offs, and task-specific re-
quirements for autonomous driving.

Index Terms—Autonomous vehicles, Natural language process-
ing, Computer vision.

I. INTRODUCTION

Large Language Models (LLMs) like GPT-4 [1] and Claude
3.5 [2] are advanced AI models designed to understand
and generate human-like text. They excel in tasks such as
text generation, translation, and summarisation. Large Vision-
Language Models (LVLMs) on the other hand, such as CLIP
[3], BLIP-2 [4], and LLaVA [5], integrate visual understanding
with language processing, enabling tasks like image captioning
and visual reasoning. These capabilities make LLMs and
LVLMs especially valuable in AVs, where visual and textual
comprehension, human-machine interaction, and explainability
are crucial. Henceforth throughout this paper, we reference
LLMs or LVLMs as L(V)LMs as shorthand to avoid rep-
etition. Some explicit examples of how these models can
bolster the AV task are as follows: improved natural language
interfaces that interpret and respond to commands in a con-
versational manner, context-aware decision-making to predict
traffic patterns, real-time semantic understanding of driving
environments to explain AV decisions, etc.
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To further expound on the utility of L(V)LMs in the
context of real-world applications concerning the AV task,
concrete examples can be observed through industry adoption.
The recent success of Wayve can, in part, be owed to the
front-facing product showcase of LINGO-1 that demonstrates
how an open-loop driving model can perform visual question
answering (VQA) on tasks such as perception, counterfactuals,
planning, reasoning and attention, lending credence to the
possibility of AI-explainability. Iterating on the framework,
Wayve’s LINGO-2 is the first closed-loop vision-language-
action driving model (VLAM) tested on public roads [6].
Beyond Wayve, NVIDIA utilizes LLMs to comprehend com-
plex and long-tailed open-world driving scenarios, addressing
a broad spectrum of AV tasks [7].

Furthermore, numerous research institutes and communi-
ties are actively exploring L(V)LM integration within the
AV context, reflecting the growing interest in this field. For
instance, DriveLM [8] studies how LVLMs trained on web-
scale data can be integrated into end-to-end driving systems
to boost generalisation. Another example is GenAD [9], which
is a generalised video prediction model for AVs that supports
action-conditioned prediction and planning. This underscores
the versatility of L(V)LMs, Drive as you speak uses LLMs for
voice commands [10], but because of this breadth of potential
use cases, it is becoming increasingly difficult to keep track
of cutting-edge research in this niche field.

Existing surveys on Large (Vision) Language Models in
autonomous vehicles offer valuable insights but have notable
gaps. LLM4Drive [11] overviews applications in perception,
prediction, and planning but lacks deep exploration of practical
integration challenges and broader implications like regu-
latory and ethical considerations. A Survey for Foundation
Models in Autonomous Driving [12] categorizes foundation
models but does not extensively analyze integration chal-
lenges or computational trade-offs involved in deployment. To-
wards Knowledge-Driven Autonomous Driving [13] proposes
a conceptual framework emphasizing knowledge integration
to enhance cognition and learning but does not specifically
focus on the role of L(V)LMs or provide detailed analyses
of their applications within AV systems. Large Language
Models for Mobility in Transportation Systems [14] focuses
on mobility forecasting, neglecting other critical AV aspects
like perception and control. Collectively, while these surveys
highlight advancements, they underexplore the practical in-
tegration of L(V)LMs into existing AV systems, especially
regarding regulatory, ethical, and Vehicle-to-Everything (V2X)
communication considerations.
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Fig. 1. Diagrammatic representation of the key areas for integrating L(V)LMs into AV architectures, categorized into modular integration, end-to-end
integration, data generation, and platforms and datasets.

To address these gaps, this survey offers a comprehensive
overview of current research developments in L(V)LM ap-
plications for AVs. We critically assess various approaches,
highlighting methodologies, outcomes, strengths, and limita-
tions, with a focus on practical integration into existing AV
systems in real-world contexts. By defining tasks suited for
L(V)LMs in AVs and accounting for the unique requirements
and constraints of AV systems, we aim to provide clearer
guidance for future research and development in this field.
The main contributions of this work can be summarised as
follows:

• Provide an up-to-date review, as of June 2024, of 62
papers on the integration and impact of L(V)LMs in
autonomous vehicles.

• Delineated and detailed the L(V)LM models, platforms,
datasets and benchmarks used in each paper.

• Propose further research directions and innovative ap-
proaches to address the current challenges in the inte-
gration and application of L(V)LMs in AVs.

The outline of this paper is as follows: In Section II, a
review of existing literature related to L(V)LM adoption in the
AV context is provided. Section III elucidates the selection,
curation, and assimilation process for choosing appropriate
papers. Section IV explores recent advancements in modular
integration of L(V)LMs within existing AV architectures.
Section V highlights L(V)LM applications in end-to-end in-
tegration within AV systems and frameworks. Section VI
examines how L(V)LM models can be leveraged for data
generation across various AV domains. Section VII overviews
typically utilised AV platforms and datasets, in addition to new
L(V)LM-specific benchmarks to stress test the performance
and efficiency of AV L(V)LM pipelines. Section VIII expands
on particular potential shortcomings and research directions
pertaining to L(V)LMs in AV use cases. And the key conclu-
sions are presented in Section IX.

II. LITERATURE REVIEW

The scope of the literature review primarily encompasses
three sub-areas, which reflect how L(V)LMs are typically

incorporated in the AV domain. L(V)LMs systems can be
tacked onto AV architectures, dividing tasks like perception
and decision-making into specialised components to create
intelligent agents capable of advanced comprehension and
interaction. End-to-End AV architectures represent state-of-
the-art solutions for autonomous vehicles, providing a seam-
less integration of perception, prediction, and planning into a
unified framework. And finally, the integration of L(V)LMs
into data generation frameworks is particularly promising.
Due to their extensive object-relation ontologies and ability to
translate abstract scenarios into structured, machine-readable
formats. And when these models work in tandem with dif-
fusion models, they enable realistic images and videos to
sharpen the effectiveness of simulation-based testing.

A. Related Work on L(V)LMs

LLMs have evolved significantly in recent years, exhibiting
advanced capabilities in text generation, comprehension, and
other areas [15]. The recent release of Llama 3 [16] showcases
the developmental and adoption speed typically exhibited in
the AI field, now considered one of the most widely used
open-source LLM models. Its robustness and versatility have
made it a popular choice in academic research, supporting a
wide range of studies across various disciplines.

LVLMs advance the integration of natural language process-
ing and computer vision, enabling holistic interpretation of
multimodal data. LLaVA (Large Language and Vision Assis-
tant) [5] excels in tasks like image captioning, visual question
answering, and multimodal translation by aligning visual and
linguistic representations through extensive pre-training on
image-text pairs. Similarly, Qwen-VL [17] enhances large
language models with vision capabilities, achieving superior
performance in complex tasks requiring detailed scene under-
standing and interaction, essential for applications like AVs.

B. Related Work on End-to-End Autonomous Vehicles

End-to-end autonomous vehicles integrate perception, pre-
diction, and planning into a single framework. Early work,
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Fig. 2. Timeline of some select papers incorporating L(V)LMs for AVs. Blue indicates L(V)LM integration within a modular framework, red signals L(V)LM
end-to-end architectures, green refers to L(V)LM data generation pipelines, and purple references L(V)LM platforms and datasets.

such as ALVINN, used neural networks for direct steering
control from sensor inputs [18]. This concept was revitalised
by NVIDIA’s end-to-end learning system in 2016, which em-
ployed CNNs to process raw camera data and output steering
commands [19].

Modern systems predominantly use imitation learning (IL)
and reinforcement learning (RL). IL methods, like Conditional
Imitation Learning (CIL), learn from human driving data
and condition the policy on high-level commands [20]. RL
approaches, using algorithms like Deep Q-Networks (DQN)
and Asynchronous Advantage Actor-Critic (A3C), optimise
policies through simulated interactions [21].

Recent advancements in end-to-end AV systems have
demonstrated their potential benefits. For instance, UniAD
[22] highlights how such systems can enhance transportation
efficiency and safety through comprehensive case studies
and empirical evidence. These systems show performance
improvements and the ability to effectively manage complex
driving scenarios, making them a promising direction for
future research and development in AV technology.

C. Related Work on Diffusion Models

In addition to the prolific success of the transformer ar-
chitecture for language generation, diffusion models respon-
sible for tabula rasa image and video generation have also
skyrocketed in popularity. This is evidenced by the rate of
adoption of DALL-E [23], and Stable Diffusion [24] across
various industry vertical use cases. Diffusion models operate
by progressively transforming random noise into coherent im-
ages or videos through iterative refinement [25]. The flexibility
of diffusion models in accepting diverse input modalities, such
as text prompts and sketches, enables rapid prototyping and
customised outputs [26].

In the context of AV research, latent diffusion models
are trained on high-level scene components and dynamics
by mapping textual driving descriptions, video frames, road
infrastructure data, and actions to a shared latent space, then
are decoded into high-quality, temporally consistent video
frames. These models can generate realistic scenarios based on
specific instructions, demonstrating coherent scene generation
and prolonged temporal consistency [27], [28]. These are
referred to as World Models. A full technical overview of
World Models is outlined in section VI-B.

III. METHODOLOGICAL APPROACH

The methodological approach opted for this survey involved
a comprehensive and systematic review of literature related

to L(V)LMs in the field of AVs. We conducted extensive
searches, predominantly between Sept. 2023 and June 2024
(Fig. 2), across various academic databases including IEEE
Xplore, Google Scholar, and arXiv. The selection criteria fo-
cused on identifying studies that explicitly discussed LLMs or
LVLMs and their applications, challenges, and advancements
in AVs.

A. Search Strategy and Selection Criteria

A systematic review was employed to ensure a replicable,
transparent procedure. To locate relevant studies on L(V)LMs
for AVs, a set of keywords was first identified as the research
pillars. These keywords included “LLM,” “large language
models”, “vision language models,” “autonomous vehicles,”
“self-driving,” and various combinations of these terms. Al-
though overlaps might occur during the search, utilising mul-
tiple databases ensures comprehensive coverage of as many
pertinent articles as reasonably possible. This process resulted
in the selection of 62 papers published before June 1, 2024,
for this review. We excluded studies that solely utilised vision
transformers to better focus on the unique contributions of
L(V)LMs, which offer LLM-enhanced commonsense reason-
ing and knowledge utilisation capabilities for AVs.

B. Quality Assessment and Methodological Limitations

The quality of the studies was evaluated based on peer-
review status, and the strength of research methodologies and
findings. Peer-reviewed papers published in conferences and
journals were prioritised as they typically ensure high quality
and rigour. Additionally, we focused more on peer-reviewed
and published papers to ensure a higher level of reliability and
scholarly integrity.

Despite these measures, the fast-paced nature of L(V)LM
research in AVs imposes certain methodological limitations
on our survey. The emergence of new findings post-review
potentially narrows the survey’s scope.

C. Classification of L(V)LM Applications in Autonomous Ve-
hicles

The application of L(V)LMs in autonomous vehicles is
diverse. This survey classifies the research by their fields to
provide a structured overview, as depicted in Fig. 1:

• Modular Integration approaches bolster specific com-
ponents like perception, planning, and control.

• End-to-end Integration systems process sensory data
directly and make driving decisions, integrating all tasks
into a single cohesive model for holistic responses.
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• Data Generation frameworks create diverse and realistic
training scenarios, which are crucial for developing robust
autonomous vehicle models.

• Platforms and Datasets establish standards for evalu-
ating the performance of autonomous vehicle systems,
essential for measuring progress and identifying areas for
improvement.

IV. MODULAR INTEGRATION

Autonomous vehicle systems often adopt modular architec-
ture, dividing the overall task into specific components such as
perception, decision-making, trajectory prediction, and human-
vehicle interaction. This structured approach allows for the
specialised development and optimisation of each component.
Modular systems contrast with end-to-end approaches, which
aim to streamline all tasks into a single unified framework.

In this section, we explore the various modules that com-
prise an autonomous vehicle system, detailing recent advance-
ments and methodologies in each area. This section is di-
vided into several subsections: Perception, Decision-making,
Trajectory Prediction, Human-Vehicle Interaction, Visual
Question Answering (VQA), and others.

A. Perception
Perception systems aim to improve the vehicle’s environ-

mental understanding and navigation through advanced scene
interpretation, object recognition, and contextual reasoning.
Key tasks include improving visual and spatial reasoning to
deduce spatial relationships and visual attributes of objects
within the scene. Visual anomaly detection which involves
the identification and understanding of contextually irregular
situations or anomalies to enhance safety is also important,
as illustrated in Fig. 3. Recent advancements incorporating
L(V)LMs into perception systems have improved visual scene
understanding and reasoning.

Fig. 3. An example of perception tasks in autonomous vehicles: a semantic
anomaly where traffic lights appear to pass through a car, later revealed as
inactive lights in transport. Image from [29].

a) Semantic Anomaly Detection with Large Language
Models [29]: This paper tackles identifying semantic anoma-
lies in vision-based policies. By converting visual observations
into textual descriptions, the framework detects contextually
irregular situations, such as inactive traffic lights being trans-
ported (Fig. 3). Evaluated in the CARLA simulator, this
approach effectively identifies and reasons about semantic
anomalies, aligning with human judgment.

b) Zelda [30]: It is an LVLM for video analytics, en-
abling natural language queries and improving result relevance
and diversity. Zelda reduces redundant results and enhances
accuracy by employing a sophisticated prompting strategy and
semantic-rich embeddings. Evaluated with the VIVA engine
on the BDD dataset, Zelda shows improvements in retrieval
precision and efficiency compared to traditional systems.

c) Talk2BEV [31]: It is an LVLM interface for bird’s-
eye view (BEV) images in autonomous vehicle contexts to
ameliorate visual reasoning and spatial understanding. The
framework augments BEV maps with image-language fea-
tures, utilising pre-trained LVLMs without additional training.

Summary on Perception: Leveraging pre-trained VLMs,
the reviewed papers demonstrate improvements in percep-
tion tasks for autonomous driving. These models effectively
tackle challenges in object detection, classification, semantic
anomaly detection, and visual reasoning. The use of common
evaluation metrics such as accuracy, IoU, and mAP across
various simulation platforms like CARLA and datasets like
BDD-X validates their performance. Experiments on platforms
like CARLA and datasets such as BDD-X highlight the
practical benefits of these models, validating improvements
in perception tasks and emphasising the need for continued
research to enhance efficiency and real-time processing across
diverse driving scenarios. Notably, Talk2BEV and Zelda lever-
age local GPUs (Nvidia T4 and A100) for high-performance
computation.

B. Decision-making

Decision-making in autonomous driving involves the pro-
cess by which a vehicle determines the safest and most
efficient actions to take in response to its environment. This
process includes navigating through complex, dynamic scenar-
ios, predicting the behaviour of other road users, and planning
trajectories that ensure both safety and compliance with traf-
fic regulations. Integrating Large (Vision) Language Models
(L(V)LMs) into these systems enhances the vehicle’s ability
to interpret nuanced situations, apply advanced reasoning, and
make more informed decisions. Fig. 4 illustrates an example
framework for integrating LLMs into the decision-making
process of an AV system.

Fig. 4. Example framework for integrating LLMs into decision-making in
AV systems. Image from [38].

Recent progress suggests that models that incorporate
L(V)LMs into the decision-making module boost the safety,
efficiency, and adaptability of autonomous vehicles by aligning
complex scenario outcomes (or proposed trajectories) closer to
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TABLE I
TABLE FOR PERCEPTION PAPERS

Paper Submission Time Specific Tasks LLM Model Dataset or Simulator

Semantic Anomaly
Detection with Large
Language Models [31]

May 2023 Semantic anomaly detection in
vision-based policies

GPT-3.5 [32] CARLA [33]

Zelda [30] May 2023 Video analytics VIVA [34] BDD-X [35]

Talk2BEV [31] Oct 2023 Visual reasoning, spatial
understanding, decision-making

BLIP-2 [4] ,
MiniGPT-4 [36] ,
InstructBLIP [37]

Talk2BEV-Bench [31]

expected human outcomes, and does so through their implicitly
learned object relation ontologies and semantic parsing of
human experience. Additionally, L(V)LM architectures can
model scenarios as sequence problems, which easily permits
the unification and coupling of natural language with trajectory
data and information to process in latent space. As further
detailed below, these capabilities lead to safer, more efficient,
and context-aware AV systems.

a) MTD-GPT [39]: Models the multi-task decision-
making problem of autonomous vehicles crossing unsignalised
intersections as a sequence modelling problem. The proposed
pipeline trains single-task decision-making expert algorithms
through reinforcement learning, which then provides an expert
dataset that is transformed into sequential data for offline
training of the MTD-GPT model.

b) Empowering Autonomous Driving with LLMs [41]:
This paper integrates LLMs with a model predictive control
trajectory planner to enhance safety. Utilising the LLM as
a decision-maker for lane changes simplifies the highway
driving task when modelled as an MPC problem by removing
the discrete decision-making steps, thus reducing the compu-
tational complexity required at the controller level.

c) Receive, Reason, and React [43]: Enables LLMs to
serve as a decision-making module in autonomous vehicles
when requested by the human driver. A structured language
generator is utilised to formulate observations received from
the perception and localisation modules into format-specific
contexts that can be ingested by an LLM. This then enables
the LLM to make definite categorical decisions for highway
overtaking and on-ramp merging tasks, such as “change lanes”,
“accelerate”, “decelerate”, etc.

d) LanguageMPC [44]: Is a chain-of-thought framework
for LLMs to handle driving scenarios, dividing the complex
decision-making process into numerous sub-problems for the
LLM to make informed decisions based on the state of the
environment, traffic rules, and the logical reasoning ability
of the LLM. The textual outputs of the LLM are converted
to mathematical representations, namely a weight matrix, an
observation matrix and an action bias, which are used as
parameters for an MPC that directly controls the vehicle.

e) DiLu [38]: A framework for AV that integrates LLMs
to enable decision-making based on common-sense knowl-
edge. DiLu consists of a driver agent, interactive environment,
and memory component. The agent employs a reasoning
module to query experiences from memory, and a reflection
module to refine decisions.

f) A Language Agent for Autonomous Driving [46]:
Transforms the traditional perception-prediction-planning
pipeline by integrating a versatile tool library for dynamic
function calls, a cognitive memory storing common sense and
experiential knowledge, and a reasoning engine capable of
chain-of-thought reasoning, task planning, motion planning,
and self-reflection.

g) LLM Multimodal Traffic Forcasting [48]: Studies the
application of L(V)LMs for traffic accident forecasting. The
proposed framework leverages deep learning methods, includ-
ing transformers, alongside traditional models like ARIMA
and Prophet, to predict traffic accidents using rich datasets.
The model integrates LLMs coupled with LLaVA for real-time
multimodal data processing.

h) Driving with LLMs [51]: Proposes a multimodal LLM
architecture that merges vectorised numeric data with pre-
trained LLMs to better contextually understand driving scenar-
ios. The approach aligns numeric vector modalities with LLMs
through vector captioning, demonstrating improved decision-
making compared to traditional methods.

i) CAVG [52]: Addresses visual grounding in AVs using
LLMs. The Context-Aware Visual Grounding (CAVG) model
integrates multiple encoders—text, emotion, image, context,
and cross-modal—with a multimodal decoder to capture con-
textual semantics and human emotional features. The CAVG
model employs multi-head cross-modal attention mechanisms
and a Region-Specific Dynamic (RSD) layer for enhanced
attention modulation.

j) LLM-Assist [55]: Presents a hybrid planning frame-
work for AV that integrates rule-based planners and LLM-
based planners. The system leverages the common-sense rea-
soning capabilities of LLMs to generate robust and well-
reasoned plans. LLM-Assist uses a conventional rule-based
planner, PDM-Closed, for common scenarios and invokes the
LLM-based planner for complex situations where rule-based
methods struggle. The LLM provides trajectory or parameter
adjustments to the base planner.

k) Evaluation of LLMs for Decision Making in Au-
tonomous Driving [57]: Evaluates LLMs for decision-making
in AV, focusing on spatial-aware decision-making and ad-
herence to traffic rules. The study assesses different LLMs’
performance in both simulated real-world traffic conditions
and actual vehicle deployment. The results indicate that GPT-4
outperforms the other models in both accuracy and reasoning,
particularly in complex scenarios requiring ethical judgments
and traffic rule compliance.
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TABLE II
TABLE FOR DECISION MAKING PAPERS

Paper Submission Time Specific Tasks LLM Model Dataset or Simulator

MTD-GPT [39] Sep 2023 Multi-Task Decision-Making,
Uncontrolled Intersection

GPT-2 OpenAI Gym [40]

Empowering Autonomous
Driving with LLMs [41]

Nov 2023 Decision Making, Lane Change GPT-4 [1] HighwayEnv [42]

Receive, Reason and
React [43]

Apr 2024 Decision Making, Highway
Overtaking, On-ramp Merging

GPT-4 [1] HighwayEnv [42]

LanguageMPC [44] Oct 2023 Decision Making, Intersection,
Obstacle Avoidance

GPT-3.5 [32] IdSim [45]

DiLu [38] Sep 2023 Knowledge-Driven Decision Making Not Specified HighwayEnv [42]

A Language Agent for
Autonomous Driving [46]

Nov 2023 Decision Making, Motion Planning GPT-3.5 [32] nuScenes [47]

LLM Multimodal Traffic
Forecasting [48]

Oct 2023 Traffic Accident Forecasting GPT-4 [1]
LLaMa2 [16]
Zephyr-7b-α [49]

Fatality Analysis Report-
ing System (FARS) [50]

Driving with LLMs [51] Oct 2023 Decision Making, QA Task GPT-3.5 [32] Custom 2D Simulator

CAVG [52] Oct 2023 Visual Grounding GPT-4 [1], BERT
[53]

Talk2Car [54]

LLM-Assist [55] Dec 2023 Decision Making GPT-3 [32], GPT-4
[1]

nuPlan [56]

Evaluation of LLMs for
Decision Making in
Autonomous Driving [57]

Dec 2023 Decision Making, Traffic Rules LLaMa2 [16]
GPT-3.5 [32], GPT-4 [1]

Field test

Hybrid Reasoning Based
on LLMs for
Autonomous Car Driving
[58]

Feb 2024 Decision Making, Adverse Weather GPT-4 [1] CARLA [33]

Multi-Modal GPT-4
Aided Action Planning
and Reasoning for
Self-driving Vehicles [59]

Mar 2024 Decision Making, Action Planning,
Reasoning

GPT-4 [1] CARLA [33]

l) Hybrid Reasoning Based on LLMs for Autonomous
Car Driving [58]: Leverages LLMs for enhancing AV
decision-making under various weather conditions. The study
integrates both common-sense and arithmetic reasoning to
process multimodal data from object detection and sensors. By
evaluating nine distinct scenarios, the framework demonstrates
the capability of LLMs to improve decision accuracy and
response times, particularly in adverse conditions such as
heavy rain.

m) Multi-Modal GPT-4 Aided Action Planning and Rea-
soning for Self-driving Vehicles [59]: Leverages GPT-4 for
action planning and reasoning in autonomous vehicles using
multi-modal data. The system processes time-series data from
a monocular camera through a graph-of-thought (GoT) struc-
ture, enabling robust policy learning and generating natural
language rationales.

Summary on Decision Making: The reviewed frameworks
leverage L(V)LMs’ (mostly LLMs) advanced reasoning capa-
bilities to simplify and manage decision-making. Models like
MTD-GPT and LanguageMPC handle multi-task decision-
making and logical reasoning for trajectory planning effec-
tively. Frameworks such as DiLu and LLM-Assist demonstrate
the use of common-sense knowledge and hybrid planning for
accurate and context-aware decision-making. Key evaluation

metrics include accuracy, response time, and adherence to
traffic rules. However, limitations such as decision-making
latency and the presence of hallucinations in models like DiLu
highlight the need for further research into LLM compression
and optimisation. Most of the aforementioned papers use
ChatGPT API, suggesting a shift towards using local L(V)LMs
to address latency issues.

C. Trajectory Prediction

Trajectory prediction aims to forecast the future positions
of traffic participants over a given time horizon. This is
distinct from AV decision-making as trajectory prediction
entails forecasting the sequence of kinematic measures (i.e.
position, velocity, acceleration, pose, etc.) associated with
traffic participants, whereas decision-making refers to taking
appropriate action at a specific timestep. Accurate trajectory
prediction is essential for safe and efficient motion planning,
collision avoidance, and overall autonomous vehicle operation.
The goal of trajectory prediction is to minimise errors and
miss rates, thereby enhancing the autonomous vehicle’s ability
to navigate complex and dynamic traffic scenarios safely and
efficiently.

a) GPT-driver: [60] Transforms motion planning for
autonomous vehicles into a language modelling problem.
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TABLE III
TABLE FOR TRAJECTORY PREDICTION PAPERS

Paper Submission Time Specific Tasks LLM Model Dataset or Simulator

GPT-driver [60] Oct 2023 Trajectory Prediction, Motion planning GPT-3.5 [32] nuScenes [47]

LLaDA [61] Feb 2024 Traffic Rule Assistance for Tourists,
AV Motion Plan Adaptation

GPT-4 [1] nuScenes [47],
nuPlan [56]

Diffusion-ES [62] Feb 2024 Trajectory Optimisation, Zero-Shot
Instruction Following

GPT-3.5 [32] nuPlan [56]

LC-LLM [63] Mar 2024 Lane Change Intention, Trajectory
Predictions

LLaMA2-7B [16] highD [64]

Using GPT-3.5, it reformulates planner inputs and outputs as
language tokens, generating driving trajectories through natu-
ral language descriptions. The method employs a prompting-
reasoning-finetuning strategy, allowing the LLM to describe
precise trajectory coordinates in its decision-making process.

b) LLaDA: [61] Uses LLMs to adapt driving behaviour
to new environments, customs, and laws. It processes inputs
like execution plans, local traffic codes, and scene descriptions
to generate adaptive driving instructions. Demonstrated on
the nuScenes dataset, LLaDA improves motion planning by
integrating a Traffic Rule Extractor (TRE) with LLMs like
GPT-4 to apply relevant traffic regulations effectively.

c) LC-LLM [63]: Leverages the reasoning and self-
explanation capabilities of LLMs to predict lane change in-
tentions and future trajectories of vehicles. By reformulating
the lane change prediction task as a language modelling
problem, the model processes driving scenario information as
natural language prompts and fine-tunes the LLMs for this
specific task. The model employs chain-of-thought reasoning
to enhance prediction transparency and reliability.

d) Diffusion-ES: [62] Optimises trajectory planning for
AV using a gradient-free method combined with trajectory
denoising. This approach uses a diffusion model to sample and
mutate trajectories guided by a reward function, optimising
non-differentiable language-shaped reward functions generated
by LLM-prompting to follow complex driving instructions.

Summary on Trajectory Prediction: These models lever-
age both language and visual data to improve the accuracy and
interpretability of trajectory forecasts. Evaluation metrics such
as Average Displacement Error (ADE), Final Displacement
Error (FDE), and Miss Rate (MR) are crucial for assessing
model performance. Frameworks like GPT-driver and LC-
LLM highlight the use of language modelling for generating
precise trajectory coordinates and decision explanations. The
reviewed models demonstrate enhanced motion planning and
collision avoidance capabilities.

D. Human-vehicle Interaction

The primary task in human-vehicle interaction using LLMs
is to enable seamless communication between the driver and
the autonomous system through natural language. This in-
cludes interpreting verbal commands, providing context-aware
responses, and adapting to individual driver preferences to
ensure safe, comfortable, and efficient driving experiences.

a) DriveAsYouSpeak: [10] Utilises LLMs to interpret
verbal commands from drivers and translate them into ex-
ecutable actions, supported by sensory tools like perception
modules and localisation systems to provide real-time envi-
ronmental awareness.

b) ChatGPT as Your Vehicle Co-Pilot: [65] Explores
using ChatGPT to enhance human-machine interaction in
AV. This framework integrates ChatGPT as a ”Co-Pilot” to
interpret and fulfil human driving intentions, handling tasks
such as path tracking control and trajectory planning based on
natural language commands.

c) Dolphins: [7] Introduces a vision-language model
for autonomous vehicles, built on OpenFlamingo. It processes
video data, text instructions, and control signals to generate
informed driving decisions. Enhanced by the Grounded Chain
of Thought (GCoT) process and specialised instruction tun-
ing using the BDD-X dataset, Dolphins excels in behaviour
comprehension, control signal forecasting, and conversational
understanding.

d) Talk2Drive: [69] Leverages LLMs to enable au-
tonomous vehicles to understand and execute natural verbal
commands, enhancing personalisation in driving experiences.
Using a memory module, it translates verbal commands into
executable controls and adapts to individual driver preferences,
reducing driver takeover rates and improving trust in the
autonomous system through field experiments.

Summary on Human-vehicle Interaction: Integrating
L(V)LMs into human-vehicle interaction systems significantly
enhances communication between drivers and autonomous
vehicles. These advancements facilitate natural language in-
teractions, leading to more intuitive, personalised, and safer
driving experiences. The highlighted studies demonstrate the
capabilities of LLMs in interpreting verbal commands, provid-
ing real-time responses, and adapting to driver preferences.
Evaluation metrics such as safety, comfort, efficiency, user
satisfaction, and system robustness are crucial for assessing
the effectiveness of these systems. Continued research in this
area will further refine these interactions, making AVs more
reliable and user-friendly.

E. VQA

Visual Question Answering (VQA) combines computer
vision and natural language processing to answer questions
based on visual input (images or videos). In autonomous ve-
hicles, VQA systems analyse sensory data to provide insights
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TABLE IV
TABLE FOR HUMAN-VEHICLE INTERACTION PAPERS

Paper Submission Time Specific Tasks LLM Model Dataset or Simulator

DriveAsYouSpeak [10] Sep 2023 Natural Language Interaction,
Adaptive Decision-Making

ChatGPT-4 [1] Not Mentioned

ChatGPT as Your Vehicle
Co-Pilot [65]

Oct 2023 Path Tracking, Trajectory Planning,
Human-Machine Interaction

ChatGPT-3.5 Turbo
[32]

Simulink [66],
CarSim [67]

Dolphins [7] Dec 2023 Decision Making, Holistic Driving
Understanding

CLIP [3]
LLaMA [16]
MPT [68]

BDD-X [35]
DriveLM [8]

Talk2Drive [69] Dec 2023 Verbal Commands Controls,
Personalized Driving Preferences

GPT-4 [1] Autoware [70]

into the environment, objects, and scenarios. By explaining the
vehicle’s actions and decisions, VQA enhances transparency
and trust, improving user confidence in safety. It also aids in
debugging and refining autonomous systems.

Fig. 5. Examples of Visual Question Answering (VQA) tasks in AV,
showcasing driving reasoning, object recognition, action justification, and
scene description. Adapted from [71].

The task of VQA involves interpreting sensory data from the
vehicle’s environment to answer natural language questions.
These questions can pertain to driving scenarios, object iden-
tification, action justification, and scene description. The input
to a VQA system typically includes images or videos from the
vehicle’s cameras and a natural language question. The output
is a textual answer that accurately reflects the information
derived from the visual input. Evaluating open-ended textual
dialogues in VQA is challenging due to the ambiguity and
subjectivity of correct answers. Common metrics for evaluat-
ing question-answering models include BLEU, METEOR, and
CIDEr (Fig. 5).

a) LingoQA: [71] Introduces a VQA benchmark for
AVs with an evaluation dataset and a classifier-based metric
called Lingo-Judge, which correlates highly with human eval-
uations. This benchmark facilitates efficient exploration and
improvement of VQA systems by providing rapid feedback
and reliable evaluation.

b) DriveLM: [8] Proposes Graph Visual Question An-
swering (GVQA) for AVs, using vision-language models to
enhance reasoning through interconnected question-answer
pairs. DriveLM-Data, built on nuScenes and CARLA, trains
DriveLM-Agent for GVQA and end-to-end driving.

c) LiDAR-LLM: [72] Adopts Large Language Models
for 3D LiDAR data in AVs, performing tasks like 3D caption-

ing and question answering. A three-stage training strategy
aligns LiDAR data with language embeddings, enhancing
spatial comprehension. Evaluations are conducted using the
NuScenes-QA dataset.

d) EM-VLM4AD: [73] Is an efficient vision-language
model for VQA in AVs, integrating traffic scene images
with the T5 language model. It generates accurate answers
to safety-related questions while minimising memory and
computational needs, demonstrating superior efficiency.

Summary on VQA: To conclude, the integration of
L(V)LMs into AV VQA systems has improved the ability to
understand and respond to natural language queries about driv-
ing environments. This enhancement facilitates better trans-
parency, debugging, and refinement of autonomous systems.
The reviewed frameworks demonstrate various applications
of VQA, such as the LingoQA benchmark for evaluating
vision-language models, DriveLM’s graph-based VQA, and
LiDAR-LLM’s 3D data captioning and question answering.
Evaluation metrics like BLEU, METEOR, and CIDEr are
essential for assessing the quality of VQA systems, ensuring
they provide accurate and contextually relevant responses.
Continued advancements in VQA will further enhance the
interpretability and reliability of autonomous driving systems.

F. Others
This section highlights innovative applications of AV

L(V)LMs that do not fit into traditional categories like Per-
ception or VQA.

a) TrafficGPT: [77] Integrates ChatGPT with the Traffic
Fundamentals Model to enhance traffic data analysis and task
decomposition. This framework allows interactive feedback
and progressive task completion, demonstrating LLMs’ po-
tential in complex traffic management.

b) R2T-LLM: [78] Leverages LLMs for traffic flow
prediction by transforming multimodal traffic data into natural
language descriptions. It captures complex spatiotemporal
patterns and external factors, providing accurate predictions
and intuitive interpretability.

c) AgentsCoDriver: [79] Introduces a modular archi-
tecture for vehicle collaboration, featuring components like
Observation, Reasoning Engine, Memory, Iterative Reinforce-
ment Reflection, and Communication Protocol. It outperforms
existing systems like DiLu [38] in collaborative vehicle oper-
ations.
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TABLE V
TABLE FOR VISUAL QUESTION ANSWERING PAPERS

Paper Submission Time Specific Tasks LLM Model Dataset or Simulator

LingoQA [71] Dec 2023 Video Question Answering, Evaluating
Vision-Language Models

Vicuna v1.5 7B [74] LingoQA [71]

DriveLM [8] Dec 2023 Graph-based Visual Question
Answering, Planning

BLIP-2 [4] DriveLM-Data [8]

LiDAR-LLM [72] Dec 2023 3D Captioning & Grounding, 3D
Question Answering, Zero-Shot
Planning

LLaMA2-7B [16] nuScenes [47] ,
NuScenes-QA [75]

EM-VLM4AD [73] Mar 2024 Visual Question Answering for ADS
Safety

T5 LM [76] DriveLM-Data [8]

d) DriveCmd: [80] Explores using LLMs to interpret
user commands in AV. By leveraging LLMs’ reasoning capa-
bilities, it improves the understanding and response to in-cabin
commands, enhancing human-vehicle interaction.

e) BALD: BALD [81] A framework for backdoor attacks
against LLM-enabled decision-making systems, exploring vul-
nerabilities during fine-tuning. It proposes word injection,
scenario manipulation, and knowledge injection as attack
mechanisms. Experiments demonstrate the effectiveness of
these attacks, highlighting security risks in L(V)LM-based
decision-making systems.

V. END-TO-END INTEGRATIONS

AV End-to-End systems represent an integrated approach
where a single model processes sensory data and directly
outputs driving decisions [82]. Unlike traditional modular
architectures that decompose the driving task into separate
components such as perception, planning, and control, end-
to-end systems streamline these processes into a unified
framework. This holistic approach is designed to enhance the
execution of driving tasks, providing a more adaptive and
cohesive response to the dynamic environments encountered
on the road [22] (depicted in Fig. 6).

Fig. 6. Comparison of various algorithm framework designs: Standalone
Models, Multi-task Frameworks, and End-to-End AVs. Adapted from [22].

The rationale behind adopting end-to-end systems lies in
their potential to reduce the complexity and error propagation
inherent in modular systems. By learning directly from data,
end-to-end models can optimise the entire driving process
holistically, rather than optimising individual components in

isolation. This can lead to more robust performance, as the
system learns to handle a wide range of scenarios through
continuous learning and adaptation.

Moreover, end-to-end systems facilitate a more straightfor-
ward training pipeline. Instead of requiring extensive engineer-
ing to integrate and fine-tune different modules, a single model
can be trained to learn the driving task comprehensively. This
approach not only simplifies the development process but also
enables the system to better generalise from training data to
real-world driving situations.

a) DriveLikeAHuman: [83] Explores the potential of
LLMs to emulate human driving behaviour, addressing the
limitations of traditional optimisation-based and modular AV
systems in handling long-tail corner cases. The study leverages
GPT-3.5 to build a closed-loop system capable of interpreting
complex driving environments, reasoning about potential ac-
tions, and remembering past experiences to improve decision-
making.

b) HiLM-D: [84] Presents an innovative approach that,
for the first time, leverages singular multimodal large language
models (MLLMs) to consolidate multiple AV tasks from
videos. The HiLM-D system focuses on Risk Object Local-
isation and Intention and Suggestion Prediction (ROLISP),
using a dual-branch architecture. The low-resolution reasoning
branch processes videos to identify and describe risk ob-
jects, while the high-resolution perception branch enhances
detection accuracy by generating detailed feature maps that
highlight potential risks.

c) DriveGPT4: [86] Similar to HiLM-D, this model
introduces an interpretable End-to-End AV system that uses
MLLMs. This system integrates video processing and tex-
tual queries to facilitate the interpretation of vehicle actions,
provide reasoning, and address user questions effectively.
DriveGPT4 predicts low-level vehicle control signals in an
end-to-end manner, utilising a bespoke visual instruction tun-
ing dataset specifically tailored for AV applications.

d) On the Road with GPT-4V(ision): [83] Explores the
use of the GPT-4V(ision) model in AV, presenting an innova-
tive approach to building a system that drives like a human.
The study addresses the limitations of previous optimisation-
based AV systems in dealing with long-tail corner cases, which
often result from catastrophic forgetting of global optimisation.
The authors identify three necessary abilities for an AV (AD)
system: reasoning, interpretation, and memorisation.
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TABLE VI
TABLE FOR END-TO-END AV PAPERS

Paper Submission Time Specific Tasks LLM Model Dataset or Simulator

DriveLikeAHuman [83] Jul 2023 Reasoning, Interpretation,
Memorization

GPT-3.5 [32] HighwayEnv [42]

HiLM-D [84] Sep 2023 Risk Object Localization, Intention
and Suggestion Prediction (ROLISP)

Custom MLLM DRAMA [85],
DRAMA-ROLISP [84]

DriveGPT4 [86] Oct 2023 Interpretation, Open-loop Control
Signal Prediction

GPT-4 [1] BDD-X [35]

On the Road with
GPT-4V(ision) [87]

Nov 2023 Reasoning, Interpretation,
Act-as-a-Driver

GPT-4V [88] nuScenes [47],
Waymo Open dataset [89],
BDD-X [35],
CODA [90],
D2-city [91],
CCD [92],
TSDD [93],
ADD [94],
DAIR-V2X [95],
CitySim [96],
CARLA [33]

LMDrive [97] Dec 2023 Closed-loop Driving Performance
under Language Instructions

LLaVA-v1.5,
Vicuna-v1.5

CARLA [33]

DriveMLM [98] Dec 2023 Behavioral Planning, Decision-Making LLaMA2-7B [16]
EVA-CLIP [99]

CARLA [33]

DriveVLM [100] Mar 2024 Interpretation, Planning,
Chain-of-Thought Process Integration

Qwen-VL [17] SUP-AD [100],
nuScenes [47]

OmniDrive [101] May 2024 Scene Description, Scene Analysis,
Meta Actions, Decision Description,
Trajectory Waypoints

Q-Former3D [4] OmniDrive-nuScenes [101],
NuScenes-QA [75]

Co-driver [102] May 2024 Adjustable Driving Behaviours,
Interpretation

Qwen-VL [17] CARLA [33]

e) LMDrive: [97] Introduces a novel language-guided,
end-to-end, closed-loop AV framework. The study aims to
overcome the limitations of previous AV systems by integrat-
ing LLMs with multi-modal sensor data to enable human-like
interaction and advanced reasoning in complex driving sce-
narios. LMDrive processes and integrates multi-modal sensor
data with natural language instructions, facilitating effective
communication with humans and navigation software.

f) DriveMLM: [98] An LLM-based framework designed
for AV that bridges the gap between linguistic decision outputs
and actionable vehicle control signals. This framework aligns
the decision states with the behavioural planning module of
the Apollo system, allowing for effective closed-loop driving
in realistic simulators like CARLA. The DriveMLM model
leverages a multi-modal tokenizer and a multi-modal LLM
(MLLM) decoder to process inputs such as multi-view images,
LiDAR point clouds, traffic rules, and user instructions.

g) DriveVLM: [100] An AV system that leverages
Vision-Language Models (VLMs) for enhanced scene un-
derstanding and planning capabilities. The system integrates
a Chain-of-Thought (CoT) process with modules for scene
description, scene analysis, and hierarchical planning. This
approach allows DriveVLM to linguistically depict driving
environments, analyse critical objects, and formulate step-
by-step plans, addressing challenges in object perception,
intention-level prediction, and task-level planning.

h) OmniDrive: [101] Presents a holistic framework
for end-to-end AV by utilising LLM agents capable of 3D
perception, reasoning, and planning. The framework intro-
duces OmniDrive-Agent, a novel 3D vision-language model
that employs sparse queries to convert visual data into 3D
representations before processing with an LLM. This setup
allows for the joint encoding of dynamic objects and static map
elements, creating a comprehensive world model essential for
effective decision-making in complex 3D environments. Ad-
ditionally, OmniDrive-nuScenes, a new benchmark, includes
tasks such as scene description, traffic regulation adherence,
3D grounding, counterfactual reasoning, and planning, all
designed to evaluate the model’s 3D spatial reasoning and
planning capabilities.

i) Co-driver: [102] An innovative AV assistant system
designed to provide human-like behaviour and understand-
ing in complex road scenes using Visual Language Models
(VLMs). The system utilises the CARLA simulator and ROS2
to validate its effectiveness, operating on a single Nvidia
4090 24G GPU. It combines the capabilities of VLMs to
offer adjustable driving behaviours based on visual perception
inputs. The authors contribute a new dataset containing images
and corresponding prompts for fine-tuning the VLM module.

Summary on End-to-End Systems: AV End-to-End sys-
tems represent a paradigm shift from traditional modular archi-
tectures by integrating perception, planning, and control into a
single, cohesive model. These systems, leveraging L(V)LMs,
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aim to enhance decision-making, reasoning, and adaptability
in complex driving scenarios. Papers like DriveLikeAHuman
and HiLM-D explore the use of LLMs to emulate human-like
behaviour, addressing long-tail corner cases and improving
risk object localization and intention prediction. DriveGPT4
and LMDrive further push the boundaries by incorporating
interpretable models that predict vehicle control signals and
follow natural language instructions in real time.

The trend toward end-to-end systems highlights their po-
tential to reduce error propagation inherent in modular ap-
proaches, offering more robust and adaptive performance.
These systems simplify the training pipeline, allowing a single
model to learn from data holistically, which is crucial for han-
dling diverse and unpredictable driving environments. How-
ever, the challenge remains in balancing the interpretability
and scalability of these models with their computational
demands.

VI. DATA GENERATION

Data generation for AV simulation-based testing encom-
passes methodologies that create realistic, diverse, and safety-
critical scenarios to test vehicles’ operational responses under
various road layouts, traffic configurations, and environmental
conditions. The success and versatility of L(V)LMs naturally
dovetail into their incorporation with existing data generation
frameworks. This is due, for the most part, to their implicit
object-relation ontologies garnered through an internet-scale
corpus of natural text and their aptitude in parsing abstract
scenario relations into readable formats.

For this reason, this section delineates two broad framework
types: LLM-Assisted Simulation and Scenario Generation,
and World Models. The former refers to any framework that
incorporates an L(V)LM that does not align with the World
Model pipeline.

A. LLM-Assisted Simulation and Scenario Generation

LLM-assisted simulation and scenario generation frame-
works leverage the capabilities of LLMs to create realistic and
diverse driving scenarios for testing and validating autonomous
vehicles. These frameworks use LLMs to interpret natural
language commands, generate complex driving scenarios, and
provide interactive feedback for dynamic adjustments. The
success and versatility of LLMs in parsing abstract scenario
relations into JSON-readable formats (or other specifications)
make them highly suitable for this task. This approach en-
hances the realism and variety of simulated environments,
making them more effective for evaluating AV systems’ re-
sponses under various road layouts, traffic configurations, and
environmental conditions.

a) CTG++: CTG++ [103] Addresses multi-agent consis-
tency in traffic scene generation using a scene-level conditional
diffusion model and a spatial-temporal transformer to model
all traffic participants’ trajectories. It operates on past and
future trajectories, using GPT-4 to translate user queries into
loss functions for traffic-compliant simulations, outperforming
baselines in generating realistic scenarios.

b) Domain Knowledge Distillation from Large Language
Model: This framework [104] uses ChatGPT to automate
the construction of domain knowledge ontologies for AVs. It
extracts and organises knowledge through prompt engineering
and iterative LLM interactions, improving the robustness and
scalability of ontology construction for testing and validating
AVs, surpassing traditional manual methods.

c) SurrealDriver: SurrealDriver [106] Utilises GPT-4 to
simulate generative driver agents in urban contexts, follow-
ing design guidelines for scene understanding, safety, short-
term memory, and long-term driving rules. The framework’s
CoachAgent guides DriverAgent to mimic human decision-
making, reducing collision rates and increasing human-
likeness in practical simulations.

d) LimSim++: LimSim++ [107] Integrates scenario in-
formation from SUMO and visual content from CARLA, using
multimodal prompts for MLLMs to perform driving tasks. It
features continuous learning with evaluation, reflection, and
memory modules, supporting various driving scenarios with
high completion rates and driving scores.

e) ChatSim: ChatSim [109] Enables editable, photo-
realistic 3D driving scene simulations via natural language
commands. It uses a collaborative LLM-agent framework
and employs McNeRF for scene rendering and McLight for
realistic lighting. Experiments on the Waymo dataset show its
ability to generate realistic, customised driving scenarios.

f) TrafficGPT: TrafficGPT [77] Leverages ChatGPT and
specialised Traffic Foundation Models (TFMs) for urban traffic
management. It analyses live traffic feeds to identify conges-
tion and suggests alternative routes, using historical data to
predict peak times. The framework supports task decomposi-
tion and interactive feedback for dynamic adjustments.

g) SeGPT: SeGPT [110] Integrates foundation models,
vehicle operating systems, and advanced infrastructure to
generate diverse scenarios with human-like driving guidelines.
It significantly improves trajectory prediction models’ perfor-
mance under challenging conditions through realistic scenario
generation.

h) CRITICAL: CRITICAL [112] A closed-loop frame-
work that enhances AV safety resilience by targeting RL
agent learning gaps with real-world traffic dynamics, scenario
generation, and LLM analysis. Using Proximal Policy Opti-
misation (PPO) and HighwayEnv, it demonstrates noticeable
performance improvements in AV safety and training.

i) ChatScene: ChatScene [114] Uses LLMs to generate
safety-critical scenarios for AVs. It transforms unstructured
language instructions into detailed traffic scenarios, breaking
them down into sub-scenarios for simulators like CARLA.
This approach enhances AV safety and reliability by creating
diverse and complex scenarios.

Summary on LLM-Assisted Simulation and Scenario
Generation: The integration of L(V)LMs into AV simulation
frameworks has elevated the sophistication and realism of
testing environments. These models, particularly advanced ver-
sions like GPT-4 and LLaMA, enable the creation of diverse,
human-like driving scenarios and real-time adjustments that
were previously difficult to achieve. This shift allows for more
nuanced testing, improving AV systems’ ability to respond to
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TABLE VII
TABLE FOR LLM-ASSISTED SIMULATION AND SCENARIO GENERATION

Paper Submission Time Specific Tasks LLM Model Dataset or Simulator

CTG++ [103] Jun, 2023 Queryable Traffic Compliant
Simulations, Fine-Grained Control,
Trajectory Modelling

GPT-4 [1] nuScenes [47]

Domain Knowledge
Distillation from Large
Language Model [104]

Jul, 2023 Domain Knowledge Distillation GPT-3.5 [1] OpenXOntology [105]

SurrealDriver [106] Sep, 2023 Simulating Human-like Behaviours,
Learning from Experts, Adhering to
Long-Term Safety Guidelines

GPT-4 [1] CARLA [33]

LimSim++ [107] Feb, 2024 Interpretation, Decision-Making,
Framework Enhancement

GPT-3.5 [1], GPT-4
[1], GPT-4V [88]

SUMO [108], CARLA
[33]

ChatSim [109] Feb, 2024 Editable Photo-Realistic 3D Driving
Scene Simulations via Natural
Language Commands

GPT-4 [1] Waymo Open Dataset [89]

TrafficGPT [77] Mar, 2024 Closed-loop Reasoning,
Decision-Making Support, Task
Decomposition, Feedback Adaption

GPT-3.5 Turbo [1] SUMO [108]

SeGPT [110] Mar, 2024 Interpretation, Framework
Enhancement

GPT-4 [1] Interaction Dataset [111]

CRITICAL [112] Apr, 2024 Critical Scenario Generation,
Closed-loop Training and Performance
Augmentation, Safety Analysis

Mistral-7B-Instruct
[113]

HighwayEnv [42]

ChatScene [114] May, 2024 Safety-Critical Scenario Generation GPT-3.5 [1] CARLA [33]

complex, real-world conditions. Moreover, L(V)LMs enhance
the adaptability and safety of AVs by enabling dynamic
scenario customisation and targeted safety testing, reflecting
a broader trend toward making AV simulations more aligned
with real-world demands and fidelities.

B. World Models

World Models represent an advanced approach to data gen-
eration for autonomous vehicle simulation, primarily operating
on the latent diffusion model (LDM) pipeline. The LDM
pipeline starts with an autoregressive transformer that predicts
high-level scene components and dynamics by mapping inputs
(video frames, text, and actions) to a shared latent space
and temporally sequencing this representation. A video dif-
fusion decoder then translates these latent representations into
high-quality, realistic video frames with temporal consistency.
The autoregressive transformer facilitates this multi-modal
integration, allowing for text and action conditioning. World
Models can generate coherent scenes with realistic object
interactions and placements, showcasing contextual awareness
of underlying road and world rules. They can also produce
novel and diverse images and/or videos with prolonged tempo-
ral consistency, extending beyond specific training instances.
These capabilities make World Models ideal for testing AV
systems in a wide range of scenarios.

a) Gaia-1: Researchers at Wayve developed GAIA-1
[27], which operates on a LDM pipeline. The LDM starts
with an autoregressive transformer that maps inputs to a shared
latent space and sequences them temporally. A video diffusion
decoder decodes these representations into consistent video
frames. This transformer also provides fine-grained control

over the outputs (such as vehicle dynamics and scene features)
while the diffusion decoder addresses the common issue of
temporal inconsistency in video generation. GAIA-1 supports
text and action conditioning, enabling it to generate realistic
scenarios based on specific instructions.

b) Magicdrive: Magicdrive [116] Generates high-fidelity
street-view images and videos with 3D geometry control,
creating training datasets to enhance perception tasks like
BEV segmentation and 3D object detection. It provides multi-
level scene control, adjusting attributes like foreground object
orientations and background layouts while maintaining multi-
camera consistency. The pipeline encodes and integrates geo-
metric conditions (3D bounding boxes, road maps) and shares
information across multiple camera views using cross-attention
and additive encoder branches.

c) Drive-WM: Drive-WM [118] Predicts future events
in AV scenarios, integrating with existing end-to-end AV
planning models. It uses temporal and multi-view encoding
layers to process image sequences across multiple views,
incorporating images, text, 3D layouts, and actions for flexible
video generation. Drive-WM supports safe planning by eval-
uating future trajectories with image-based reward functions,
improving robustness in out-of-distribution situations for zero-
shot path planning.

d) GenAD: GenAD [9] A generalised video prediction
model for AV. Utilising the OpenDV-2K dataset, it employs
temporal reasoning blocks with causal temporal attention and
decoupled spatial attention to model dynamic interactions.
GenAD supports action-conditioned prediction and planning,
outperforming non-LDM models in video prediction quality
and zero-shot generalisation, reducing prediction errors and
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TABLE VIII
TABLE FOR WORLD MODEL PAPERS

Paper Submission Time Specific Tasks LLM Model Dataset or Simulator

Gaia-1 [27] Sep, 2023 Text & Action Conditioning,
Contextual Awareness (Road & World
Rules), Scene & Dynamics Control

Encoded Text via
T5-large Model [115]

Proprietary Driving Data
(London, UK between
2019 and 2023) ≈ 4,700
hours at 25Hz.

Magicdrive [116] Oct, 2023 BEV Segmentation, 3D Object
Detection, Multi-Camera Consistency

Pre-trained CLIP
Text Encoder [117]

nuScenes [47]

Drive-WM [118] Nov, 2023 Flexible Integration with Existing
End-to-End AV Planning Models

Pre-trained CLIP
Text Encoder [117]

nuScenes [47]

GenAD [9] Feb, 2024 Action-Conditioned Prediction &
Planning, Zero-Shot Generalisation

Pre-trained CLIP
Text Encoder [117]

nuScenes [47],
OpenDV-2K Dataset [9]

ADriver-I [119] Nov, 2023 Vision-Action Pairs unifying Visual
Features and Control Signals,
Adaptive Generation

Vicuna-7B-1.5 [74] nuScenes [47]

DriveDreamer-2 [28] Apr, 2024 Action-Conditioned Prediction &
Planning, Zero-Shot Generalisation

Finetuned GPT-3.5
[1]

nuScenes [47]

enhancing simulation consistency.
e) ADriver-I: ADriver-I [119] is a Multi-modal Large

Language Model (MLLM) that unifies visual features and con-
trol signals to construct a general world- and diffusion model.
It integrates perception, prediction, planning, and control into
a cohesive system processing vision-action pairs to predict and
generate future driving scenarios. Using Stable Diffusion 2.1,
it generates future video frames based on predicted control
signals and historical frames. Trained on the nuScenes dataset
and a large private dataset, ADriver-I adapts to various driving
conditions without extensive prior information.

f) DriveDreamer-2: DriveDreamer-2 [28] Generates
high-quality driving videos and realistic driving policies
through a two-stage training process. The first stage processes
road structural features and traffic metadata to contextualise
real-world scenes. The second stage, ActionFormer, couples
sequential HDMaps and 3D bounding boxes to encoded
driving actions, which are then input to a diffusion model.
DriveDreamer-2 adds a finetuned GPT-3.5 to convert text
prompts to agent trajectories for diverse, multi-view driving
simulations. Both models are trained on the nuScenes dataset.

Summary on World Models World Models utilise
L(V)LMs (frequently LLMs) in conjunction with LDM to
enhance autonomous vehicle simulations. Key models like
Gaia-1 and Magicdrive focus on generating high-quality, tem-
porally consistent video frames and enhancing perception tasks
with 3D geometry control, respectively. Drive-WM supports
safe planning through multi-view inputs, while CTG++ excels
in generating multi-agent consistent traffic scenarios. World
Models have the potential to upturn current data genera-
tion schemas by offering continual realistic data generation
throughout the typical AV stack, and are expected to be
intimately linked (in a closed-loop fashion) with AV evaluation
frameworks. However, it is also worth noting that these models
require substantial computational resources.

VII. PLATFORMS, BENCHMARKS, AND DATASETS

Autonomous vehicle research relies heavily on both simula-
tion platforms and comprehensive datasets to develop, test, and

validate various components of driving systems. Simulation
platforms provide controlled environments to test algorithms
under diverse conditions, while datasets offer real-world data
essential for training and benchmarking these systems. For
a more detailed exploration, this section is divided into two
subsections: Platforms, Benchmarks and Datasets. The former
discusses key simulation environments, and the latter reviews
significant datasets critical to advancing autonomous vehicle
technology.

A. Platforms

Simulation platforms play a crucial role in autonomous
vehicle research. Two notable platforms are CARLA [33], and
HighwayEnv [42]. They are integral to advancing the field
of AV by providing robust environments for comprehensive
testing and development.

a) CARLA: CARLA [33] An open-source simulator de-
signed for developing, training, and validating autonomous
urban driving systems. It offers a highly configurable and
realistic environment with diverse conditions, traffic scenarios,
and sensor setups like cameras, LiDAR, and radar. CARLA’s
realistic urban layouts and dynamic elements make it ideal for
testing algorithms in perception, planning, and control.

b) HighwayEnv: HighwayEnv [42] A lightweight simu-
lation environment tailored for reinforcement learning algo-
rithms in highway driving scenarios. It simulates realistic traf-
fic conditions and vehicle dynamics, supporting tasks such as
lane keeping, lane changing, and car-following. HighwayEnv’s
simplicity and efficiency facilitate rapid experimentation and
iterative development.

B. Benchmarks and Datasets

Datasets are crucial for the training and benchmarking
of AV systems. Prominent datasets like the Waymo Open
Dataset and NuScenes [47] (shown in Fig. 7) provide extensive
multi-sensor data, including high-resolution images, lidar point
clouds, and detailed annotations. These datasets have been
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instrumental in advancing algorithms for object detection,
tracking, and prediction in real-world scenarios. The NuScenes
dataset, in particular, supports multi-modal sensor fusion re-
search and includes a robust benchmark and leaderboard,
fostering a competitive environment for researchers.

Fig. 7. Examples of the NuScenes Dataset. Adapted from [47].

In addition to these foundational datasets, newer ones like
NuScenes-QA [75] and OmniDrive-nuScenes [101] expand the
scope to cognitive tasks, such as visual question answering
and counterfactual reasoning. Benchmarks like BDD-X [35],
which focuses on interpretability and reasoning, and DRAMA
[85], which targets risk perception and explainability, highlight
the diverse challenges in AV. Future dataset development
should integrate diverse data sources, capture dynamic and
real-time scenarios, and include human factors and ethical
considerations to support the advancement of robust and
intelligent AV systems.

a) BDD-X: BDD-X [35] A benchmark dataset for eval-
uating the interpretability and reasoning capabilities of AV
systems, featuring diverse scenarios with textual descriptions,
questions, and answers to enhance systems’ understanding and
explanations.

b) NuScenes: NuScenes [47] Is a comprehensive dataset
for AV, providing real-world driving data with multi-sensor in-
formation, aiding in the development and testing of perception
and decision-making systems in various scenarios.

c) DRAMA: DRAMA [85] Focuses on risk perception
and explainability in driving scenes, featuring 17,785 interac-
tive scenarios with video-level and object-level questions about
driving risks and important objects, enhancing situational
awareness.

d) NuScenes-QA: NuScenes-QA [75] Extends the
NuScenes dataset with a question-answering framework to
evaluate an agent’s understanding and reasoning in driving
contexts, offering visual question-answering tasks for detailed
environmental queries.

e) NuPrompt: NuPrompt [120] Integrates language
prompts into driving scenarios within 3D environments. Built
on NuScenes, it includes 35,367 descriptions matched with
objects, supporting cross-modal understanding and object-
tracking tasks.

f) Driving QA: Driving QA [121] Consisting of 160k QA
pairs derived from 10k driving scenarios. These scenarios are
collected using a 2D simulator and an RL agent, providing a
robust dataset for training the model in interpreting scenarios,
answering questions, and making decisions.

g) Talk2BEV-Bench: Talk2BEV-Bench evaluates large
vision-language models for AV using 1000 annotated bird’s-
eye view (BEV) scenes and over 20,000 question-answer pairs.
It assesses competencies like instance attributes, counting, and
spatial reasoning, using metrics like accuracy and regression.

h) Reason2Drive: Reason2Drive [122] Offers over
600,000 video-text pairs for interpretable reasoning in AV,
emphasising sequential perception, prediction, and reasoning
with data from nuScenes, Waymo, and ONCE.

i) LaMPilot: LaMPilot [123] Integrates LLMs into AV
for interpreting user commands via code generation. The
LaMPilot-Bench evaluates LLM-based agents across various
driving scenarios for adaptability and accuracy.

j) LangAuto: LangAuto [97] Benchmarks AV systems’
ability to follow natural language instructions with dynami-
cally updated navigation commands, testing understanding and
execution in dynamic environments.

k) LingoQA: LingoQA [71] Provides a benchmark for
video question answering in AV with 28K scenarios and 419K
QA pairs, highlighting performance gaps between humans and
models. It includes Lingo-Judge for accurate evaluation.

l) SUP-AD: SUP-AD [100] A comprehensive dataset
designed to evaluate AV’ capabilities in scene understanding
and meta-action planning within complex driving scenarios.
It includes 1,000 video clips across more than 40 different
driving scenario categories, with detailed annotations covering
scene descriptions.

m) CODA-LM: CODA-LM [124] The first benchmark
designed for the automated and systematic evaluation of Large
Vision-Language Models (LVLMs) on self-driving corner
cases. Based on the CODA dataset, CODA-LM comprises
9,768 real-world driving scenarios with extensive annotations,
including 41,722 textual annotations for critical road entities
and 21,537 annotations specifically for corner cases.

n) OmniDrive-nuScenes: OmniDrive-nuScenes [101]
Enhances NuScenes with 3D spatial understanding and
counterfactual reasoning tasks, assessing autonomous
systems’ decision-making and planning abilities through
simulated trajectories and outcomes.

Summery on Platforms, Benchmarks and Datasets Sim-
ulation platforms like CARLA and datasets such as NuScenes
and Waymo Open Dataset are foundational for advancing au-
tonomous vehicle (AV) technologies, offering realistic scenar-
ios and multi-sensor data for tasks like 3D detection and track-
ing. Specialised benchmarks like NuScenes-QA, DRAMA,
and BDD-X expand into cognitive tasks, risk perception, and
interpretability. However, there’s a growing need for more
comprehensive resources, such as the emerging CODA-LM,
that address a broader range of tasks, integrate complex
scenarios, and consider human factors.
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TABLE IX
TABLE FOR BENCHMARKS AND DATASETS

Dataset Name Submission Time Specific Tasks Data Format Datasize

BDD-X [35] Jul, 2018 Introspective and rationalization
explanations for vehicle behavior

Video, text 6,984 videos
77 hours
26,228 annotations

NuScenes [47] Mar, 2019 3D detection and tracking,
multi-modal sensor fusion

Images, LiDAR, radar 1,000 scenes
1.4M images
1.3M LiDAR sweeps
1.4M annotations

DRAMA [85] Sep, 2022 Joint risk localization and
captioning in driving scenes

Video, text 17,785 scenarios
91 hours
35,038 visual attributes

NuScenes-QA [75] May, 2023 Visual question answering for AV Images, LiDAR, Q&A pairs 34K scenes
460K Q&A pairs

NuPrompt [120] Sep, 2023 Object-centric language prompts
for 3D driving scenes

Images, text 35,367 prompts
188,445 instances

Driving QA Dataset [121] Oct, 2023 Question answering for driving
scenarios, control commands

Text, control commands 160K Q&A pairs
10K driving scenarios

Talk2BEV-Bench [31] Oct, 2023 Evaluates LVLMs for instance
attributes, counting, spatial
reasoning

BEV images, Q&A pairs 1,000 scenes
20,000 Q&A pairs

Reason2Drive [122] Dec, 2023 Chain-based reasoning for AV Video, text 600K video-text pairs

LaMPilot [123] Dec, 2023 User instruction following, code
generation

Semi-human annotated traffic
scenes

4,900 scenarios

LangAuto [97] Dec, 2023 Closed-loop driving, language
instruction following

Multi-modal sensor data,
navigation and notice
instructions

64K data clips

LingoQA [71] Dec, 2023 Video question answering for AV Video, Q&A pairs 28K scenarios
419.9K Q&A pairs

SUP-AD [100] Feb, 2024 Scene understanding, meta-action
planning, hierarchical planning

Multi-view videos, 3D
perception, scene descriptions,
meta-actions, decision
descriptions, waypoints

1,000 video clips

CODA-LM [124] Apr, 2024 Automated evaluation of LVLMs
on self-driving corner cases

Real-world driving scenarios,
textual annotations

9,768 scenarios
63,259 textual annotations

OmniDrive-nuScenes
[101]

May, 2024 Perception, reasoning, and
planning in 3D domain with QA
pairs

Q&A pairs, text 341,490 conversations
34,149 descriptions
34,149 keywords
135,948 planning tasks

VIII. CHALLENGES AND FUTURE RESEARCH DIRECTIONS

The integration of Large Language Models (LLMs) and
Large Vision-Language Models (LVLMs) into autonomous
vehicles (AVs) has significantly advanced adaptive decision-
making, trajectory prediction, traffic accident forecasting,
human-vehicle interaction, and targeted high-fidelity data gen-
eration. L(V)LMs have fundamentally shifted how research
institutions and industry approach the dynamic driving task
(DDT) problem, regardless of the integration approach—be
it modular integration, end-to-end integration, data generation
methods, or the choice of specific platforms and datasets (as
outlined and explored throughout the paper). However, several
challenges remain to be addressed before regulatory and au-
thorisation agencies accept these technologies for commercial
or civilian applications.

A. Hallucinations

Hallucinations refer to the generation of outputs by
L(V)LMs that are factually incorrect or nonsensical. This issue
is particularly critical in AVs, where accurate and reliable
information is paramount for safety. Current L(V)LMs can oc-
casionally produce hallucinations when interpreting complex
driving scenarios or making decisions based on incomplete or
ambiguous data. For example, an LVLM might misinterpret
a visual input, leading to incorrect obstacle detection. Fu-
ture research should focus on developing methods to detect
and mitigate hallucinations, such as incorporating stronger
verification mechanisms, enhancing training data quality, and
leveraging multi-modal inputs to cross-validate information.

B. Latency

Real-time decision-making is crucial for the safety and
efficiency of autonomous driving. However, the computational
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complexity of L(V)LMs can introduce delays that are unac-
ceptable in dynamic driving environments. High latency can
result in delayed responses to critical situations, potentially
leading to accidents. Future research should explore optimising
model architectures and leveraging hardware accelerations,
such as GPUs and TPUs on-premises (within the vehicle), to
reduce inference times. Approaches like model compression,
quantisation, and pruning can also help in reducing computa-
tional overhead. Additionally, hybrid strategies that balance the
use of on-board processing and edge/cloud computing could
help mitigate latency issues while maintaining performance.

C. Ethical and Regulatory Considerations

Ensuring that these systems make unbiased decisions, es-
pecially in life-critical scenarios, is required for regulatory
compliance. There are concerns about how L(V)LMs may in-
advertently perpetuate biases present in training data, affecting
decision-making in scenarios involving pedestrians or other
vehicles. Additionally, data privacy and the security of AI
systems are paramount, as vulnerabilities could be exploited
maliciously. Future research should address these challenges
by developing frameworks for ethical AI, implementing bias
mitigation strategies, ensuring compliance with regulations,
and implementing robust security measures to protect against
attacks. Collaboration with regulatory bodies to establish stan-
dards and guidelines for the deployment of L(V)LMs in AVs
is also essential.

D. Vehicle-to-Everything (V2X) Communication

V2X communication involves the exchange of information
between vehicles and various entities like infrastructure, pedes-
trians, and other vehicles. Integrating L(V)LMs into V2X
communication frameworks presents an opportunity to en-
hance the context-awareness and decision-making capabilities
of AVs. For instance, L(V)LMs can interpret complex mes-
sages and predict traffic patterns based on shared data. Future
research should investigate the integration of L(V)LMs into
V2X communication, focusing on improving the reliability,
security, and efficiency of these interactions. This includes
developing protocols that ensure timely and accurate infor-
mation exchange while safeguarding against misinformation
and malicious interference.

IX. CONCLUSION

This survey has provided a comprehensive overview of the
integration and impact of Large (Vision) Language Models
(L(V)LMs) in autonomous vehicles (AVs), focusing on four
key areas: modular integration, end-to-end integration, data
generation, and platforms and datasets. We have examined the
current state of research, highlighting significant advancements
and innovations that L(V)LMs bring to various aspects of
AV systems, including perception, decision-making, trajec-
tory prediction, and human-vehicle interaction. These models
offer substantial benefits in terms of enhanced contextual
understanding, improved decision-making processes, and more
intuitive human-vehicle interactions.

Despite these advancements, several challenges remain,
such as addressing issues of hallucinations, latency, and ethical
considerations. The scalability and adaptability of L(V)LMs
to different driving environments, as well as their integration
into Vehicle-to-Everything (V2X) communication frameworks,
are areas that require further research and development. Our
survey fills gaps left by previous reviews by providing detailed
analyses of practical integration strategies and real-world im-
plementations, offering insights into computational trade-offs
and task-specific requirements.

As we move forward, it is crucial to continue exploring
these challenges and developing robust solutions that ensure
the safe, efficient, and reliable deployment of L(V)LMs in
autonomous driving systems. By addressing these issues, we
can unlock the full potential of L(V)LMs, leading to a future
where autonomous vehicles are not only smarter and more
capable but also safer and more trustworthy.
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